
Articles
https://doi.org/10.1038/s41567-021-01170-x

1ISI Foundation, Turin, Italy. 2ISI Global Science Foundation, New York, NY, USA. 3Princeton Neuroscience Institute, Princeton University, Princeton, NJ,
USA. 4Siemens Corporation, Princeton, NJ, USA. 5MathWorks, Natick, MA, USA. 6Intel Labs, Santa Clara, CA, USA. 7Department of Psychology, Princeton
University, Princeton, NJ, USA. 8These authors contributed equally: Giovanni Petri, Sebastian Musslick. ✉e-mail: giovanni.petri@isi.it

There is a fundamental tension between two kinds of use of par-
allel distributed computing in network architectures. The first
focuses on incorporating a variety of interacting constraints

in the learning and processing of complex representations (‘inter-
active parallelism’). This has been profitably exploited in theories
of human cognitive function1,2 and, most recently, in the design
of ‘deep learning’ artificial systems3–5. The second kind of use, in
contrast, focuses on the capacity of a network to carry out multiple
processes independently (‘independent parallelism’). This approach
has been exploited by the massively parallel systems used in most
modern computing clusters, and optimized by message-passing sys-
tems, such as MPI (message-passing interface)6, that seek to identify
and distribute independent components of computation.

Recent work has suggested that there is a fundamental tradeoff
between these two types of parallelism that may help explain fun-
damental features of human cognitive function7. On the one hand,
we can effortlessly perform many kinds of task at the same time,
such as walking, talking and responding to our surroundings, all
of which presumably involve extensive simultaneous computations.
On the other hand, we are radically constrained in our ability to per-
form other kinds of task concurrently, such as planning a grocery
list while simultaneously carrying out multidigit mental arithmetic.
In cognitive psychology, this is attributed to a fundamental distinc-
tion between automatic and control-dependent processing8,9. The
former is capable of effortless, simultaneous execution, while the
latter is subject to seriality constraints on performance.

Early theorists proposed two alternative accounts for this con-
straint in control-dependent processing. One suggests that this
reflects reliance on a centralized, limited capacity mechanism
(akin to a central processing unit), thus explaining the dramatic
limitation in the human ability to simultaneously perform mul-
tiple control-dependent tasks. The alternative interpretation sug-
gests that constraints in control-dependent processing reflect the
purpose, rather than a limitation, of control mechanisms, that is, to

resolve conflicts that arise from competition among the resources
required to perform specific combinations of tasks, which them-
selves rely on the shared use of representations10–13.

Although compelling, the latter proposal was not undergirded
by a formal analysis of the extent to which shared use of representa-
tions constrains processing at the system level. In particular, one
concern might be that shared use of representations in a system as
large as the human brain may pose minimal constraints on parallel
processing. Recently, however, numerical work has shown that even
modest sharing of representations among tasks can impose radical
constraints on simultaneous execution due to crosstalk interfer-
ence among tasks, and that the effects of such interference can be
invariant to network size14,15. Understanding the source of such con-
straints, and explaining them explicitly in mechanistically and for-
mally rigorous terms, remains an important challenge not only for
understanding human performance—and how it arises from com-
putations in the brain—but also for the design of artificial systems
that can emulate human performance.

In this Article, we provide a formal analysis of the problem,
based on a combination of graph theory and statistical mechanics
of frustrated systems. We illustrate the mechanism by which even
modest degrees of shared representations impose strong constraints
on the number of tasks that can be performed simultaneously with-
out the risk of interference from crosstalk between tasks. Our results
highlight a fundamental tension in network architectures between
the benefits that accrue from shared representations (that is, flex-
ibility of processing and generalization3–5) and their cost in terms of
processing efficiency (that is, the number of independent tasks that
can be performed in parallel7).

Results
Measures of task dependency predict parallel processing capabil-
ity in a trained neural network. To consider the problem of mul-
titasking (that is, concurrent parallel processing) analytically, we

Topological limits to the parallel processing
capability of network architectures
Giovanni Petri   1,2,8 ✉, Sebastian Musslick   3,8, Biswadip Dey   4, Kayhan Özcimder   5,
David Turner   3, Nesreen K. Ahmed   6, Theodore L. Willke   6 and Jonathan D. Cohen   3,7

The ability to learn new tasks and generalize to others is a remarkable characteristic of both human brains and recent artificial
intelligence systems. The ability to perform multiple tasks simultaneously is also a key characteristic of parallel architectures,
as is evident in the human brain and exploited in traditional parallel architectures. Here we show that these two characteristics
reflect a fundamental tradeoff between interactive parallelism, which supports learning and generalization, and independent
parallelism, which supports processing efficiency through concurrent multitasking. Although the maximum number of possible
parallel tasks grows linearly with network size, under realistic scenarios their expected number grows sublinearly. Hence, even
modest reliance on shared representations, which support learning and generalization, constrains the number of parallel tasks.
This has profound consequences for understanding the human brain’s mix of sequential and parallel capabilities, as well as for
the development of artificial intelligence systems that can optimally manage the tradeoff between learning and processing
efficiency.

NATuRe PhySiCS | VOL 17 | MAY 2021 | 646–651 | www.nature.com/naturephysics646

mailto:giovanni.petri@isi.it
http://orcid.org/0000-0003-1847-5031
http://orcid.org/0000-0002-8896-639X
http://orcid.org/0000-0003-1140-1363
http://orcid.org/0000-0002-9258-5717
http://orcid.org/0000-0002-7512-1195
http://orcid.org/0000-0002-7913-4962
http://orcid.org/0000-0001-9825-513X
http://orcid.org/0000-0003-2316-0763
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-021-01170-x&domain=pdf
http://www.nature.com/naturephysics

ArticlesNATure PHysics

first provide a formal definition of a task. More details are provided
in Supplementary Section 1. Given an input space I of stimuli (for
example, colours) and an output space O of responses (for example,
verbal response), a task T: I → O represents a mapping between the
two (for example, naming the colour of a stimulus), such that the
mapping is independent of any other, and that selection of a fea-
ture from its input space can be made independently of any other.
Different tasks can share an input space, output space or both (for
example, reading a colour word such as ‘red’ out loud and nam-
ing the colour in which it is printed share an output space). When
this occurs, there is the potential for the tasks to interfere with
one another14,16.

Such interference can be made explicit by describing the
task structure in the form of a (bipartite) task structure graph
GTS ¼ GðI ;O; T Þ
I

. GTS makes the sharing of representations across
tasks explicit (Fig. 1a), where I , O

I
 and T

I
 are, respectively, the sets

of input spaces, output spaces and tasks. A task t 2 T
I

 is formally

defined as mapping from an input space to an output space t: I → O,
with I 2 I ;O 2 O

I
. Whenever two tasks share an input node I or an

output node O, we assume that they are at risk of interference due
to direct crosstalk and therefore should not be executed in parallel;
we call this dependency ‘structural’ because of the direct reliance
on common resources15. Figure 1a depicts this type of dependency
between tasks a and b and between b and c. Importantly, in addi-
tion to structural dependence, there can also be ‘functional’ depen-
dence between two tasks: this is the case whenever, given two
tasks, a third task maps the input space (that is, connects the input
node) of the first task to the output space (that is, output node) of
the second one. In Fig. 1a, tasks a and c are functionally depen-
dent via task b, because activating a stimulus in task c’s input space
does the same for b, thus invoking a response to b that may con-
flict with the response to a. Finding the maximum number of tasks
that can be simultaneously executed (that is, multitasked) is then
equivalent to finding the largest set of edges in GTS that are neither

Task
structure

graph
GTS

Task structure graph GTS

Task dependency graph GD

a
b

c d
e f

g

h
i j

a
b

c

j

i

dh

g e
f

a
b

c a
b

c a
b

c

a b

c

Task layer

Stimulus layer

Hidden
Layer

Output layer

Task environment Neural network training Extract MIS

b

a
b

c
d f

e

d

MIS predicts parallel processing capabilityDependencies between tasks

1
2
3
4
5
6

T
as

ks

T
ask sim

ilarity
T

ask sim
ilarity

a

b

f

c

e

d α = 3

Structural dependency Functional dependency

GD

GTS

M
IS

 –
 3

M
IS

 –
 2

M
IS

 –
 1

M
IS

M
IS

 +
 1

M
IS

 +
 2

M
IS

 +
 3

Task set size

0

20

40

60

80

100
Predicting multitasking accuracy from α

M
ul

tit
as

ki
ng

 a
cc

ur
ac

y
(%

)

MIS = 1

MIS = 2

MIS = 3

MIS = 4

MIS = 5

MIS = 6

Logistic fit

T
as

ks

Tasks

α

1
2
3
4
5
6

1 2 3 4 5 6

Tasks

1 2 3 4 5 6

1.0

0.5

0

1.0

0.5

0

Fig. 1 | Graph-theoretic measures predict parallel processing capacity. a, A bipartite task structure graph, GTS, describes tasks in terms of mappings from
an input space to an output space. Each task corresponds to an edge in GTS from an input node to an output node. Two tasks are (1) structurally dependent
if they converge to the same output node (left) or originate from the same input node (middle) or (2) functionally dependent if their edges are connected
by a third task (right). b, Dependencies between tasks in GTS are expressed by the corresponding task dependency graph GD: tasks are now represented
as nodes, and they are connected if the two tasks are structurally or functionally dependent. The MIS of GD corresponds to the largest set of tasks that a
network can execute in parallel without interference15. Its cardinality, α = ∣MIS∣, is the maximal parallel processing capacity of the network GTS. c, A neural
network is trained on a set of tasks, in which each task requires the network to map a set of features from the stimulus layer via a hidden layer to a set
of features on the output layer. Each task is designated by a unit in an additional (task) input layer that projects to both the hidden and output layers.
All tasks in the environment can be expressed in terms of a task structure graph GTS (as shown in a). The network is trained on all tasks by activating, on
each trial, a particular task unit and an input unit corresponding to a stimulus feature in the set for that task, and requiring the network to activate the
corresponding output unit. The average activity patterns at the hidden and output layers across all inputs under a given task are taken as the network’s
representation of that task. The two resulting similarity matrices (for the hidden and output layers) are used to infer dependencies between tasks based on
shared task representations, and to construct the empirical task dependency graph �GD

I
, which we use to predict the empirical �α. d, The parallel processing

capacity of the trained network is predicted by �α. We use the overbar notation to refer to quantities estimated from simulations. The plot shows the highest
multitasking accuracy of the network as a function of the number of tasks it is asked to perform in parallel (performance curve) as indicated in relation to
the network’s MIS. Each line corresponds to the multitasking performance of a trained network, whereas the colour of each line indicates the predicted MIS
for that network. The solid black line depicts the average fit of a logistic function to accuracy curves across networks.

NATuRe PhySiCS | VOL 17 | MAY 2021 | 646–651 | www.nature.com/naturephysics 647

http://www.nature.com/naturephysics

Articles NATure PHysics

structurally nor functionally dependent on one another. In
graph-theoretic terms, this corresponds to finding a maxi-
mum induced edge matching of GTS: a subset of tasks in which
none of the tasks either share a node or are connected by an
edge. In Fig. 1b (left) we show an example of induced matching
(in orange).

Interestingly, under an assumption that we will specify in detail
shortly, all task dependencies can be made explicit in a derived
graph, the task dependency graph GD, in which nodes represent
tasks and edges represent their (structural or functional) dependen-
cies (Fig. 1b, right). Starting from GTS, the dependency graph is built
by considering the square of the line graph of GTS. In fact, the line
graph of GTS encodes structural interferences between tasks. Taking
its square corresponds to closing all open wedges and encodes func-
tional interference. It can be shown that the maximum induced edge
matching on GTS corresponds to the maximum independent set
(MIS) of GD (ref. 17), the largest set of nodes that are not connected
by any edge. The cardinality of this set is called the independence
number α of GD.

This equivalence is key to our first main contribution: a neu-
ral network constrained to learn a task structure characterized by
graph GTS exhibits a maximum parallel capacity given by the inde-
pendence number of the corresponding GD.

To assess the correspondence of this theoretical measure
of parallel processing capacity to the performance of an actual
network, we trained a simple nonlinear feedforward network
(Fig. 1c), with four layers, that has been used previously to simu-
late a wide array of empirical findings concerning human cognitive
performance18–20 (Methods). The network architecture entails two
input layers, one that encodes the current stimulus (stimulus layer)
and another that encodes the task to be performed on the stimulus
(task layer). Both input layers project to a hidden layer that com-
putes an internal representation of task-relevant input features
of the stimulus. Finally, information encoded at the hidden layer
is projected together with the task layer input to an output layer,
at which the response of the network is computed. The weight
projections from the task layer serve to bias processing towards
task-relevant stimulus information represented at the hidden layer,
as well as task-relevant responses at the output layer18. This, in turn,
shapes the representations of the input and output space respec-
tively for each task.

As a benchmark, we demonstrate the correspondence between
the structure of GTS and the one derived from the theoretical
dependence graph GD under the assumption of maximum sharing
of representations. We train a set of networks to learn the map-
ping from inputs to outputs for each task, with fixed weight projec-
tions from the task layer to the hidden layer that are the same for
tasks with shared input spaces. This guarantees the maximum
amount of representation sharing between tasks. We refer to this
as a minimal basis set representation, as it is the most compact
form of representation at the hidden layer that can support the
performance of all tasks. We trained 400 networks in this man-
ner, varying the total number of tasks (between 4 and 30) and task
structure graph GTS (Fig. 1c). For each network trained on a task
environment GTS, we computed a theoretical task dependency
graph, GD (details are provided in the Methods and Supplementary
Sections 2 and 3). Figure 1d shows that α predicts well the maxi-
mum number of tasks the network can perform in parallel. That is,
the highest accuracy that the network can achieve (across all task
combinations for a given task set size) drops as soon as the task set
size exceeds α.

These results show that, when the network is constrained to learn
maximally shared representations, the pattern of performance it
exhibits is consistent with the task interference structure described
by GTS, and its parallel processing capacity can be accurately pre-
dicted from the corresponding GD, which is easily obtained from

GTS. However, they do not address other network configurations
that do not conform to the minimal basis set. Other weighting
schemes are possible and are of interest for theoretical and practi-
cal reasons. In the Supplementary Information we show that our
results are valid also for different fixed (Supplementary Section 4)
and unconstrained (Supplementary Section 5) weights, as well as
for more complex neural network architectures (Supplementary
Section 6).

Maximum parallel capacity estimation for dependency graphs
of arbitrary size. An important theoretical question that remains
unanswered is how the relationship between the sharing of repre-
sentations and the parallel processing capacity of a network scale
with network size for very large networks, for which it is prohibitive
to compute either α and �α directly, where we use the overbar nota-
tion for quantities estimated from simulations.

To address this problem, we develop a graph ensemble formula-
tion of the MIS problem in terms of the degree distribution of the
task dependency graph. This allows us to tease apart the roles of
graph density and heterogeneity, independently of network size. To
achieve this, we need to relate the MIS density ρα (ρ�α

I
) to the degree

distribution of GD (�GD
I

).
In the minimal basis set configuration, the degree distribution

of GD can be computed directly starting from GTS. Because the task
dependency graph GD is the square of the line graph LðGTSÞ

I
 of GTS,

the estimated degree �kDe
I

 of task e from input node I to output node O
in GD as �kDe

I
 (ref. 21) is

�k
D
e ’ ðkI�1Þhk2Oi

hkOi þ ðkO�1Þhk2I i
hkIi

� ðkI�1ÞðkO�1ÞðhkIi�1ÞðhkOi�1Þ
M�1

ð1Þ

where 〈·〉 are the expectation values of the outdegree kI of the input
node I and the indegree kO of the output node O, and M is the num-
ber of edges in GTS (or equivalently of nodes in GD). Full details are
provided in Supplementary Section 10.

In Fig. 2a we show that equation (1) gives good results
(Pearson’s R > 0.9, P < 0.05) for graphs of various densities
and for various degree distributions. Note that �kD

I
 is written in terms

of the first two moments of Pst, the probability for an input node I
with degree s to be linked to an output node O with degree t, recov-
ering the previously observed connection between the heteroge-
neity of the GTS graph and that of the corresponding dependency
graph GD.

When not in the minimal basis set scheme, it is not possible, in
general, to obtain an expression for the degree distribution of �GD

I

from GTS. However, this is a minor limitation as it is possible to esti-
mate �GD

I
 from the network activations, even when GTS is unknown

(Supplementary Section 4). Thus, going forward, we will focus
exclusively on dependency graphs, disregarding their origin (theo-
retical or empirical). For simplicity of notation, we will denote these
as GD and their independence number as α, dropping the overbar
notation.

To estimate the expected maximum independence number α, we
build on recent work by Lucibello and Ricci-Tersenghi22 and esti-
mate the independence number density ρα = α/M (where M is the
number of nodes in GD), based on a factor graph description of the
maximum set packing problem, of which the independence number
problem is a particular instance. Crucially, these expressions relate
ρα to the graph’s degree distribution, providing a window into the
role of the network’s topology.

Exploiting the properties of degree generating functions23, the ρα
estimate can be rewritten as

ρα ¼
hki
hci 1� pc=ðc�1Þ



� �
þ ðMkðtÞ �M0ðtÞÞ ð2Þ

NATuRe PhySiCS | VOL 17 | MAY 2021 | 646–651 | www.nature.com/naturephysics648

http://www.nature.com/naturephysics

ArticlesNATure PHysics

where t ¼ log p
I

, M′ is the derivative of M with respect to t, and p*
needs to satisfy the self-consistent equation

p ¼ E~c 1� 1
hkip

M0ðtÞ
� �~c

ð3Þ

Here k is the node degree in GD, c and ~c refer to the factor nodes’
degrees and excess degrees, which in the case of the MIS are fixed to
c = 2 and ~c ¼ 1

I
 (details are provided in Supplementary Section 8),

E~c
I

 is the expection value over ~c and Mk(t) is the generating function
for the degree distribution p(k).

For classes of graphs that have analytical degree generating func-
tions, it is possible to obtain insights into the role of the density and
heterogeneity of GD directly. For example, for a Gaussian distribu-
tion with mean 〈k〉 and variance σ2, the moment generating func-
tion takes the form MkðtÞ ¼ ehkitþσ2t2=2

I
. Substituting the expression

above, we obtain

ρα ¼ hki
hci 1� pc=ðc�1Þ



� �
þMkðln pÞð1� hki � σ2ln pÞ ð4Þ

In Fig. 2b we show that this expression provides a close approxima-
tion of the behaviour of ρα for increasing network density and for
various levels of degree heterogeneity of GD. Importantly, it provides
an analytical grounding for the previous empirical observations
that increased heterogeneity of task overlap for a given average den-
sity results in a higher ρα (refs. 14,15). Here, we use Gaussian degree
distributions to explicitly illustrate the impact of the density of the
dependency graph, which depends, in turn, on the density of the
task structure graph and its degree heterogeneity: for a fixed size,
dense and uniform graphs have a smaller MIS than sparse, hetero-
geneous ones.

Finally, we show that it is possible to predict ρα starting from the
degree distribution of GTS, estimating the degree distribution of GD
from it, and then plugging it into equation (2). We computed this for

a set GTS with fixed number of nodes per layer, N, and for increasing
densities (Supplementary Figs. 9 and 10 show other GTS topologies).
We find that the prediction obtained from the estimated and actual
degree distributions of GD are in agreement, and they both yield a
strict upper bound on ρα.

Effective parallel processing capacity. The independence number
specifies the maximum capacity and is specific to a particular subset
(or very few subsets) of tasks. Thus, the independence number does
not address the more practical question: what is the greatest num-
ber of tasks that the system is expected to perform simultaneously
on average, given a probability distribution of tasks in the environ-
ment. In other words, given a task set T of cardinality ∣T∣ = γ, what
is the probability Pγ that those tasks are both available for execution
and can be successfully executed at the same time?

The probability Pγ is a special case of the probability P(θ;γ,GD) of
successfully executing θ out of γ tasks from a dependency graph GD.
The latter requires the θ nodes in T ⊂ GD not to be linked with each
other, and the remaining γ − θ nodes to be connected to at least one
of the first θ tasks. For a graph GD, we can estimate the probability of
successfully executing 1 ≤ θ ≤ γ tasks in T as

Pðθ; γ;GDÞ ’ 1� hk2i
2MD

� � θ
2ð Þ θhki2

2MD

� �γ�θ

ð5Þ

where MD, 〈k〉 and 〈k2〉 are, respectively, the number of edges in
GD and the first and second moments of GD’s degree distribution
(Supplementary Section 9).

In Fig. 3a we show the value of Pγ as a function of γ, for various GD
with variable network size M but fixed network density. Naturally,
for γ = 1, the probability of executing the task is always 1 because a
single task cannot interfere with itself, but Pγ decreases very rapidly
as the number of attempted tasks increases and, remarkably, does not
depend on the network size (details are provided in Supplementary

0 50 100 150 200 250
0

50

100

150

200

a b c
– k

D

GTS layer size = 20

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

P
 (

k
D
)

0 200 400 600
0

100

200

300

400

GTS layer size = 100

z = 3
z = 5
z = 8
z = 15

0
0.01
0.02
0.03
0.04
0.05
0.06

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.2

0.3

0.4

0.5ρ α

0.6

0.7

0.8 σ2 = 0.4µ

σ2 = 1.0µ

σ2 = 1.6µ

z = 3
z = 5
z = 8
z = 15

0.2

0.1

0

0.3

0.4

0.5

0.6

0.7

P
 (

k
D
)

– k
D

ρ α

0.20.1 0.3 0.4 0.5 0.6 0.7

kD

0 200 400 600

kD 〈k〉/N〈k〉

Fig. 2 | Graph-theoretic results for ρα. a, Comparison of the estimated �kD
I

 and actual kD for dependency graphs obtained from task structure graphs with
a range of average degrees z. For each value of z, the task dependency graph GD was computed from its bipartite GTS with a fixed degree on the input
nodes and a binomial distribution of degrees for the output nodes (similar to an Erdös–Rényi graph, and following ref. 14). The lower plot shows the same
information in distribution form, with discrete bins corresponding to �kD

I
 and the solid line corresponding to the actual distribution. b, MIS densities ρα for

a set of generic networks with Gaussian degree distributions of varying widths, comparing the exact computation (circles) with the values predicted from
equation (2) (solid lines) as a function of the Gaussian distribution mean μ. The plots show that, for fixed μ, increasing the degree of heterogeneity (σ2) is
associated with increased ρα. c, MIS densities ρα for GD as a function of the task structure graph density 〈k〉/N, comparing (1) the explicit calculation for
theoretical GD (circles); (2) the analytical results using equation (2) and the GD degree distribution estimated using equation (1) (pink shading); (3) the
analytical results using equation (2) with the measured GD degree distribution. We created a set of GTS graphs with binomial degree distributions on the
input and output layers. For each parameter choice, we computed 50 GTS graphs. Error bars on circles correspond to 1 s.d. of the resulting ρα values. The
colours of the circles represent the average density of the corresponding GD, which ranges from 0.2 to 0.7. The shaded areas are 1 s.d. intervals for the
predicted ρα values.

NATuRe PhySiCS | VOL 17 | MAY 2021 | 646–651 | www.nature.com/naturephysics 649

http://www.nature.com/naturephysics

Articles NATure PHysics

Section 9). Equation (3) confirms analytically the size independence
of the MIS previously observed in numerical experiments by Feng
et al.14—at fixed density for GD, 〈k〉, 〈k2〉 and MD all scale as M2,
making equation (3) independent of M.

To quantify how the rapid decrease in Pγ relates to performance,
we associate a reward with each multitasking attempt. We consider
two reward schemes: (1) in the ‘all-or-nothing’ scheme, we give a
positive reward to an attempt to perform γ tasks only if all tasks
are successful (that is, independent in GD) and no reward other-
wise; (2) in the ‘graded’ scheme, we give a reward to each multi-
tasking attempt on γ tasks proportional to the maximum number of
independent tasks γ0≤γ

I
 in that set.

These schemes encode two extremes in how rewards for per-
formance might depend on multitask success. The all-or-nothing
scheme corresponds to situations in which the outcomes of the tasks
can influence one another, and thus all tasks need to be successfully
performed (for example, juggling a collection of objects requires all
individual objects to be successfully juggled; failing on one is likely
to induce failure on the others). By contrast, the graded scheme cor-
responds to situations in which task outcomes are not correlated
(for example, driving and listening to a conversation) and hence
failing one task does not induce failure of others. For the former,
the expected reward is therefore written, modulo a multiplicative
coefficient, as

ϕðγ;GDÞ ¼ γPγ þ 0ð1� PγÞ ¼ γPγ ð6Þ

which peaks at low values of γ and rapidly converges to zero
(Fig. 3b).

For the more permissive graded scheme, we have

~ϕðγ;GDÞ ¼
Xγ

θ¼1
Pðθ; γ;GDÞθ ð7Þ

In this case, ~ϕ grows for increasing γ values (Fig. 3c). This is expected,
because, under this scheme, for any task subset the reward is posi-
tive (for example, at the limit if the task set is the whole network,
the reward is proportional to the MIS size). Despite this, the aver-
age reward ~ϕ grows sublinearly with γ and, again, does not depend
on the network size. As a consequence of this sublinear increase,
any increase in dependency graph size is associated with dimin-
ishing returns in both ϕ and ~ϕ. In the Supplementary Information
(Supplementary Figs. 12 and 13), we show that, in the case of fixed

average degree of GD, the effective parallel processing capacity
weakly depends on M, but the qualitative results do not change.
Finally, we show that, also in the small M limit (outside the regime
of validity of the formal treatment), a qualitatively similar effect can
be observed for the empirical effective parallel processing capacity
of trained neural networks (Supplementary Figs. 7–14).

Discussion
The work presented provides a formal analysis of the idea that the
two forms of parallelism described here are not merely differences
in computational strategy, but reflect a fundamental computational
tradeoff in network architectures between efficiency of learning
and generalization versus efficiency of processing: the very network
fabric that supports interactive parallelism by sharing representa-
tions between tasks (for example, for learning and/or generaliza-
tion) induces limits on independent parallelism and processing
efficiency—that is, their ability to perform multiple tasks simulta-
neously7. Here, we have presented an approximation of the prob-
lem that is analytically tractable and thus can be used to examine
it at arbitrary scales, permitting an analysis of its manifestation in
more complex systems—both natural and artificial. Formally, we
were able to summarize how the topology of the task dependency
graph affects the neural architecture’s parallel capacity and observed
that the benefits of increases in network size scale in a strikingly
sublinear manner, with rapidly decreasing returns in parallel capac-
ity for larger networks, even when the proportion of shared rep-
resentations (and attendant rate of competition) is kept constant.
Empirically, we have validated a parsimonious method to estimate
the underlying task dependency graph from individual patterns of
task-specific activity, which can be extracted from data (for exam-
ple, from neural data and neural network activations).

Although the network models we used have direct mappings
between inputs and outputs, the definition of a task used in our anal-
yses applies in deeper networks as well, as each pair of layers can be
considered as an input–output mapping and thus the entire network
can be considered as a series of such single-layered networks. From
this perspective, a task to be executed by the network as a whole
can be decomposed into a series of subtasks, traversing the various
layers. Although this allows for the task to be successfully repro-
duced by multiple paths, at the same time the likelihood of interfer-
ence between pathways implementing different tasks increases with
the number of intermediate layers (that is, opportunities for

1.0a b c

0.8

0.6

0.4

0.2

P
 (

θ
=

 γ
)

0

2

2

2
0

4

4

46

6

68

8

810

10

1012 2 4 6 8 10

2

0

4

6

8

10

ϕ γ ~ ϕ γ

γ γ γ

N = 4
N = 8
N = 10
N = 20
N = 40

Fig. 3 | Graph-theoretic results for Pγ, ϕγ and ~ϕγ
I

. a, Probability Pγ that all tasks in a task subset of cardinality γ are performed successfully (that is, are
independent). We plot Pγ measured directly (circles) in dependency graphs obtained from Erdös–Rényi task graphs with density ρ = 0.2 and variable size
(N = 4, 8, 10, 20, 40) and compare them with the predictions of equation (5) (solid lines). The theoretical Pγ values are slightly higher than the measured
values, but overall we find good agreement between the two. Vertical dashed lines highlight the MIS values for various N and show how, for all sizes, the
probability of randomly choosing a maximal independent task set is vanishingly small. b, The ϕγ values (obtained using the Pγ in a) are much lower than the
MIS for the corresponding size (shown as the horizontal dashed lines); moreover, ϕγ displays little dependence on the network size N, as opposed to the
MIS, which grows linearly instead. c, Even under the more permissive reward function, ~ϕγ

I
 only grows sublinearly with γ and again shows no dependence on

GTS size N, leading to strongly diminishing returns for the effective parallel capacity.

NATuRe PhySiCS | VOL 17 | MAY 2021 | 646–651 | www.nature.com/naturephysics650

http://www.nature.com/naturephysics

ArticlesNATure PHysics

intersection), compounding the effects we have described for
single-layer networks24,25. The same logic applies to recurrent net-
works. These factors are similar to the effects of path structure on
controllability in unfolded temporal graphs26,27.

Our work also provides the basis for developing methods of
assessing the parallel processing capacity of natural agents (for
example, humans) for a given set of tasks. Previously proposed
methods have used explicit signal modelling to infer the parallel
processing capacity of a system from behavioural data (reaction
time distributions) generated by actual task performance28–30. Our
method complements these by providing a means for estimat-
ing parallel processing capability when the underlying task struc-
ture is unknown using the number of measurements linear in the
number of tasks, as opposed to the factorial number required by
previous methods. This may be valuable for important real-world
domains, where multitasking is critical, but in which it is imprac-
tical to individually and exhaustively evaluate all of the potential
task combinations—for example, pilots monitoring a large number
of instruments.

One potential limitation of the proposed analysis is that aver-
ages of task representations need not necessarily reflect the extent
to which sharing of representations occurs across tasks, which must
occur at the level of individual stimulus features. Although the
results presented in this, as well as other work15,31, suggest that task
averages do seem to provide a good proxy for the similarity in rep-
resentations across tasks, others have reported work on using geo-
metric measures to identify the manifolds on which representations
for different tasks live in neural networks32,33. It remains a matter
for future research to explore how well these measures can be used
to predict the parallel processing capacity of network architectures.

Finally, at a higher level of analysis, our methods may also help
shed light on how a system balances the efficiency of learning and
generalization provided by interactive parallelism and shared repre-
sentations, at the cost of serial processing, with the efficiency of pro-
cessing provided by independent parallelism, at the cost of greater
training time and task specificity.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41567-021-01170-x.

Received: 1 April 2019; Accepted: 8 January 2021;
Published online: 18 February 2021

References
 1. McClelland, J. L., Rumelhart, D. E. & Hinton, G. E. The Appeal of Parallel

Distributed Processing (MIT Press, 1986).
 2. Rogers, T. T. & McClelland, J. L. Semantic Cognition: A Parallel Distributed

Processing Approach (MIT Press, 2004).
 3. Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and

new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828
(2013).

 4. Caruana, R. Multitask learning. Mach. Learn. 28, 41–75 (1997).
 5. Baxter, J. Learning internal representations. In Proc. Eighth Annual Conference

on Computational Learning Theory 311–320 (ACM, 1995).
 6. Gropp, W., Lusk, E., Doss, N. & Skjellum, A. A high-performance, portable

implementation of the MPI message passing interface standard. Parallel
Comput. 22, 789–828 (1996).

 7. Musslick, S. et al. Multitasking capability versus learning efficiency in neural
network architectures. In Proc. 39th Annual Meeting of the Cognitive Science
Society 829–834 (Cognitive Science Society, 2017).

 8. Posner, M. I. & Snyder, C. R. in Information Processing and Cognition: The
Loyola Symposium 55–85 (Erlbaum, 1975).

 9. Shiffrin, R. M. & Schneider, W. Controlled and automatic human information
processing: II. Perceptual learning, automatic attending and a general theory.
Psychol. Rev. 84, 127–190 (1977).

 10. Wickens, C. D. in Multiple-Task Performance 1st edn (ed. Damos, D. L.) Ch.
1 (CRC Press, 1991).

 11. Allport, D. A. in New Directions in Cognitive Psychology (ed. Claxton, G. L.)
112–153 (Routledge, 1980).

 12. Meyer, D. E. & Kieras, D. E. A computational theory of executive cognitive
processes and multiple-task performance: Part I. Basic mechanisms. Psychol.
Rev. 104, 3–65 (1997).

 13. Navon, D. & Gopher, D. On the economy of the human-processing system.
Psychol. Rev. 86, 214–255 (1979).

 14. Feng, S. F., Schwemmer, M., Gershman, S. J. & Cohen, J. D. Multitasking vs.
multiplexing: toward a normative account of limitations in the simultaneous
execution of control-demanding behaviors. Cogn. Affect. Behav. Neurosci. 14,
129–146 (2014).

 15. Musslick, S. et al. Controlled vs. automatic processing: a graph-theoretic
approach to the analysis of serial vs. parallel processing in neural network
architectures. In Proc. 38th Annual Meeting of the Cognitive Science Society
1547–1552 (Cognitive Science Society, 2016).

 16. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol.
18, 643–662 (1935).

 17. Gavril, F. Algorithms for a maximum clique and a maximum independent set
of a circle graph. Networks 3, 261–273 (1973).

 18. Cohen, J. D., Dunbar, K. & McClelland, J. L. On the control of automatic
processes: a parallel distributed processing account of the stroop effect.
Psychol. Rev. 97, 332–361 (1990).

 19. Cohen, J. D., Servan-Schreiber, D. & McClelland, J. L. A parallel distributed
processing approach to automaticity. Am. J. Psychol. 105, 239–269 (1992).

 20. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D.
Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

 21. Newman, M. Networks: An Introduction (Oxford Univ. Press, 2010).
 22. Lucibello, C. & Ricci-Tersenghi, F. The statistical mechanics of random set

packing and a generalization of the Karp–Sipser algorithm. Int. J. Stat. Mech.
2014, 1–13 (2014).

 23. Newman, M. E. J. Random graphs with clustering. Phys. Rev. Lett. 103,
058701 (2009).

 24. Alon, N. et al. A graph-theoretic approach to multitasking. In Proc. 31st Annual
Conference on Neural Information Processing Systems 2101–2110 (NIPS, 2017).

 25. Alon, N. et al. Multitasking capacity: hardness results and improved
constructions. SIAM J. Discrete Math. 34, 885–903 (2020).

 26. Pósfai, M. & Hövel, P. Structural controllability of temporal networks. New J.
Phys. 16, 123055 (2014).

 27. Li, A., Cornelius, S. P., Liu, Y.-Y., Wang, L. & Barabási, A.-L. The fundamental
advantages of temporal networks. Science 358, 1042–1046 (2017).

 28. Townsend, J. T. & Wenger, M. J. A theory of interactive parallel processing:
new capacity measures and predictions for a response time inequality series.
Psychol. Rev. 111, 1003–1035 (2004).

 29. Townsend, J. T. & Wenger, M. J. The serial–parallel dilemma: a case study in
a linkage of theory and method. Psychon. Bull. Rev. 11, 391–418 (2004).

 30. Wenger, M. J. & Townsend, J. T. On the costs and benefits of faces and words:
process characteristics of feature search in highly meaningful stimuli. J. Exp.
Psychol. Human 32, 755–779 (2006).

 31. Musslick, S. & Cohen, J. D. A mechanistic account of constraints on
control-dependent processing: shared representation, conflict and persistence.
In Proc. 41st Annual Meeting of the Cognitive Science Society 849–855
(Cognitive Science Society, 2019).

 32. Bernardi, S. et al. The geometry of abstraction in hippocampus and prefrontal
cortex. Cell 183, 954–967 (2020).

 33. Cohen, U., Chung, S. Y., Lee, D. D. & Sompolinsky, H. Separability and
geometry of object manifolds in deep neural networks. Nat. Commun. 11,
746 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021, corrected
publication 2021

NATuRe PhySiCS | VOL 17 | MAY 2021 | 646–651 | www.nature.com/naturephysics 651

https://doi.org/10.1038/s41567-021-01170-x
https://doi.org/10.1038/s41567-021-01170-x
http://www.nature.com/naturephysics

Articles NATure PHysics

Methods
Neural network architecture and processing. We used a standard nonlinear
feedforward network, with four layers, that has been used previously to simulate
a wide array of empirical findings concerning human cognitive performance2,18,20.
The network consists of two input layers, one of which represents the stimulus
presented to the network and another that encodes an instruction for the task
that the network has to perform on this stimulus. Both input layers project to
a hidden layer. Unless stated otherwise, the hidden layer contained 100 units.
Both the hidden layer and the task layer further project to an output layer that
computes the network’s response. The real-valued activity of each input unit
constitutes the current stimulus. Activated units in the task layer indicate the
task(s) to be currently executed. Performing a single task corresponds to clamping
the corresponding task unit to 1 (activated) while all other units are set to 0.
Multitasking conditions are represented by activating multiple task units at the
same time. Units in the hidden and output layers take values between 0 and 1, as
determined by a logistic activation function applied to their net input. Stimulus
input units are structured according to D dimensions (subvectors of the stimulus
pattern), each of which is comprised of a set of D feature units with only one
feature unit activated per dimension. Similarly, output units are organized into
D response dimensions, with only one of the D response units permitted to be
active within a response dimension. Each task is represented by a single task
input unit that is associated with a set of unique, one-to-one mappings between
the input units in one stimulus dimension and the output units in one response
dimension, and that is independent of the mappings for all other tasks (Fig. 1c).
The number of stimulus input dimensions and response dimensions was varied
between four and nine across environments. The task mappings were generated
with the Erdös–Rényi model such that the number of overlapping tasks for a given
stimulus input dimension z varied between one and seven. For each environment
GTS, a network was initialized with a set of small random weights and then trained
using the backpropagation algorithm34 to produce the task-specified response
for all stimuli in each task until it reached a mean-squared error performance of
0.001. (The training criterion was chosen such that the network achieves single
task performance comparable to that of human participants on tasks requiring
simple stimulus–response mappings (accuracy %).) We constrained the learned
representations of the network to reflect the task similarity structure of the
environment GTS by fixing the weights from the task units to the hidden layer:
weight vectors for tasks relying on the same stimulus input dimensions were set to
yield a Pearson correlation coefficient of value 1 whereas weight vectors for tasks of
non-overlapping stimulus dimensions were uncorrelated.

Dependency graph extraction. We followed the analysis described in ref. 15 and
focused on the representations (patterns of activity) over the hidden and output
units, insofar as these reflect the computations carried out by the network required
to perform each task. In particular, we are interested in the characteristics of
these representations for each task, how they compare across tasks, and how these
factors correspond to empirically evaluated parallel processing performance. The
representations associated with each task can be characterized by calculating,
for each unit in the hidden and output layers, the mean of its activity over all of
the stimuli for a given task. This mean pattern of activity can then be used as a
representation of the task.

Correlating patterns of activity within a layer across tasks yields a task
similarity matrix that can be examined separately for the hidden and output layers
of the network. This can then be used to assess the extent to which different tasks
rely on similar or different representations within each layer of the network. Figure
1c provides an example of such similarity matrices (thresholded for similarity
correlations above θ = 0.5). Tasks that have similar representations over the hidden
layer can be inferred to rely on the same input dimension—that is, they share an
input component in the bipartite graph representation of the network—and tasks
that are similar at the output layer can be inferred to share an output component.
Accordingly, a task dependency graph �GD

I
 (of the type shown in Fig. 1b) can be

constructed by measuring the patterns of activity observed in the network while it
performs each individual task.

Assessing multitasking accuracy. To test the overall multitasking performance
for each network, we considered all sets of ‘multitaskable’ tasks on which it was
trained; that is, all sets of structurally independent tasks for which each task had
input and output dimensions that were distinct from all of the others in the set.
The accuracy of the network on a single task was determined by the probability

of responding correctly in the task-relevant output dimension, averaged across
all stimuli. Multitasking accuracy for a given set of tasks was determined by
the average probability of responding correctly across all task-relevant output
dimensions, averaged across all stimuli. The probability of responding correctly
in a given output dimension was determined by a leaky competitive accumulator
layer35 (optimized for performance under each multitasking condition),
implementing the assumption that the network could only provide one response
per response dimension (details are provided in the Supplementary Information).
To statistically assess the predictability of multitasking performance, we fit a
logistic curve to the best multitasking accuracy as a function of set task set size.
To avoid ill-conditioned solutions for logistic fits, we excluded networks for which
the number of data points fell below three. Multitasking accuracy is considered
well predicted if the inflection point (bias) of the fitted logistic lies above the
predicted task set size and below the predicted set size + 1.

Statistical evaluation of α prediction from neural network simulations.
To statistically evaluate the MIS prediction in Fig. 1d, we fit a logistic function
to the accuracy of a network’s performance as a function of set size. We find
that the inflection point of the sigmoid curve is accurately predicted by the α
derived from GD. That is, the inflection point (that is, offset) of the curve lies
significantly above a set size equal to α, t(352) = 9.1465, P < 1 × 10−17, and below
a set size of α + 1, t(352) = −24.3986, P < 1 × 10−77. These predictions turn out
to be robust for a range of different performance metrics, number of hidden
units in the network, as well as choices of θ used to extract �GD

I
 (Methods and

Supplementary Section 3).

Data availability
Example data files are available at https://github.com/lordgrilo/Multitasking_
capacity. Source data are provided with this paper.

Code availability
Code to reproduce the simulations and analysis reported here is availabile at
https://github.com/lordgrilo/Multitasking_capacity.

References
 34. Hinton, G. E., Rumelhart, D. E. & Williams, R. J. Learning representations by

back-propagating errors. Nature 323, 533–536 (1986).
 35. Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky,

competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

Acknowledgements
G.P. has received funding support from Fondazione Compagnia San Paolo and from
Intesa Sanpaolo Innovation Center. S.M. and J.D.C. acknowledge support from the John
Templeton Foundation. The opinions expressed in this publication are those of the
authors and do not necessarily reflect the views of the John Templeton Foundation.

Author contributions
G.P., S.M., B.D., K.Ö., N.K.A., T.L.W. and J.D.C. designed the research. G.P. developed
and performed analytical and numerical calculations. S.M. and D.T. designed,
implemented and performed the neural network simulations. S.M., K.Ö., B.D. and
N.K.A. provided tools and performed neural network analysis. J.D.C. and T.L.W.
conceptualized research and provided advice for all parts of the work. G.P., S.M., B.D.,
K.Ö., N.K.A., T.L.W. and J.D.C. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41567-021-01170-x.

Correspondence and requests for materials should be addressed to G.P.

Peer review information Nature Physics thanks Hartmut Lentz and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATuRe PhySiCS | www.nature.com/naturephysics

https://github.com/lordgrilo/Multitasking_capacity
https://github.com/lordgrilo/Multitasking_capacity
https://github.com/lordgrilo/Multitasking_capacity
https://doi.org/10.1038/s41567-021-01170-x
http://www.nature.com/reprints
http://www.nature.com/naturephysics

	Topological limits to the parallel processing capability of network architectures

	Results

	Measures of task dependency predict parallel processing capability in a trained neural network.
	Maximum parallel capacity estimation for dependency graphs of arbitrary size.
	Effective parallel processing capacity.

	Discussion

	Online content

	Fig. 1 Graph-theoretic measures predict parallel processing capacity.
	Fig. 2 Graph-theoretic results for ρα.
	Fig. 3 Graph-theoretic results for Pγ, ϕγ and .

