Behavior Research Methods
https://doi.org/10.3758/513428-021-01598-2

l‘)

Check for
updates

SweetPea: A standard language for factorial experimental design

Sebastian Musslick! © . Annie Cherkaev? - Ben Draut? - Ahsan Sajjad Butt? - Pierce Darragh? - Vivek Srikumar? .
Matthew Flatt? - Jonathan D. Cohen':3

Accepted: 12 April 2021
© The Psychonomic Society, Inc. 2021

Abstract

Experimental design is a key ingredient of reproducible empirical research. Yet, given the increasing complexity of
experimental designs, researchers often struggle to implement ones that allow them to measure their variables of interest
without confounds. SweetPea (https://sweetpea-org.github.io/) is an open-source declarative language in Python, in which
researchers can describe their desired experiment as a set of factors and constraints. The language leverages advances in
areas of computer science to sample experiment sequences in an unbiased way. In this article, we provide an overview
of SweetPea’s capabilities, and demonstrate its application to the design of psychological experiments. Finally, we
discuss current limitations of SweetPea, as well as potential applications to other domains of empirical research, such as

neuroscience and machine learning.

Keywords Factorial design - Randomization and sampling - Sequential constraints - Nuisance factor

Introduction

Reproducibility is an issue of increasing concern in
scientific research. The problem has gained considerable
attention in psychological research, where behavioral
phenomena are often confounded by the presence of various
moderator variables (Sherman & Pashler, 2019; Klein et al.,
2014; Open Science Collaboration & et al., 2015; Stroebe
& Strack, 2014; Dijksterhuis, Van Knippenberg, & Holland,
2014). More generally, the problem arises in any field where
an experiment systematically manipulates a set of variables,
controlling as best as possible for variables of non-interest,
to evaluate the effects of experimental manipulation. This
approach, a fundamental staple of the scientific process,
applies to empirical studies in the natural sciences as
well as the training and evaluation of artificial systems in
engineering, such as machine learning algorithms (Langley,

P4 Sebastian Musslick
musslick @princeton.edu

Princeton Neuroscience Institute, Princeton University,
Princeton, NJ 08544, USA

School of Computing, University of Utah,
Salt Lake City, UT 84112, USA

Department of Psychology, Princeton University,
Princeton, NJ 08544, USA

Published online: 06 August 2021

1988; Zadrozny, 2004; Drummond, 2006; Bergstra &
Bengio, 2012; Gardner, Neumann, Grus, & Lourie, 2018).

Experimental design

Methods of experimental design date back to the study of
inheritance through the cultivation of pea plants! (Miller,
2011), and remains a gold standard in psychological
research. In experimental settings, an ideal design samples
variables of experimental interest in an unbiased way,
while suitably controlling for variables of non-interest.
While this is easy to state in principle, it is often difficult
to achieve in practice. This can be for many reasons.
One is that it may be impossible to sample all of
the combinations of variables needed to achieve a fully
balanced design. Random sampling is often used to address
this. However, when data collection is expensive and
therefore sample sizes are constrained, random sampling
may be inadequate to ensure an adequately balanced or
controlled design (Button et al., 2013; Kiihberger, Fritz,
Scherndl, 2014; Rossi, 1990; Wells & Windschitl, 1999).
Randomization is also often used when the complexity
of a design makes it difficult to determine how to
satisfy constraints imposed by the design in a more

IThis involved the crossing of pure-breeding lines of plants as
experimental factors and assessing traits of the hybrid progeny (Druery
& Bateson, 1901; Mendel, 1866).

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01598-2&domain=pdf
http://orcid.org/0000-0002-8896-639X
https://sweetpea-org.github.io/
mailto: musslick@princeton.edu

Behav Res

systematic way (e.g., Mayr & Keele, 2000); however,
naive randomization can render the design vulnerable to
unintended and unrecognized biases. There is an increasing
risk that this problem will be amplified by platforms that
provide the infrastructure for automated data collection (De
Leeuw, 2015; Gureckis et al., 2016; Hartshorne, de Leeuw,
Goodman, Jennings, & O’Donnell, 2019); without proper
experimental design, these approaches to large-scale data
collection may encounter the same issues of reproducibility
as traditional data collection, but in more arcane and
difficult to detect ways. Finally, interest is increasing in
optimal experimental design where, rather than simple
counterbalancing, it is helpful to identify experimental
conditions that are best for discriminating between models
(Dale, 1999; Myung & Pitt, 2009)

These issues also arise in engineering. For example, in
machine learning, the outcome of training is profoundly
influenced by the statistics of the stimuli on which the model
is trained; small sample sizes or violations of proper random
sampling can limit performance or validity of statistical
learning techniques, such as naive Bayes or decision tree
learners (Zadrozny, 2004) or, conversely, it may be useful to
identify designs that contrast conditions or segment the data
in ways that optimize learning. Furthermore, the success of a
machine learning system crucially depends on the choice of
feature representations, models and their hyperparameters,
which together call for searching through a potentially
intractable search space (Chapelle, Vapnik, Bousquet, &
Mukherjee, 2002; Bergstra & Bengio 2012).

Factorial structure vs. implementation constraints

The best approach to the concerns raised above is a well
designed experiment. Factorial structure is the cornerstone
of well-controlled experimental design involving repeated
measures: The experimental variables manipulated in each
repeated measure, or trial, are defined as factors, and the
values of each variable to be sampled in the experiment
are defined as levels of the corresponding factors. As an
example, consider a Stroop experiment (Stroop, 1935) in
which participants are asked to name the color in which
a color word is displayed (e.g., say “green” to the written
word RED displayed in green). The color and word are
factors of the experiment. Instances of colors (e.g., green)
and color words (e.g., “RED”) can be considered levels
of the factors color and word, respectively. The trials
of the experiment are then constructed by crossing the
factors—that is, selecting the levels from each factor to
be used in each trial. For instance, a simple design for
the Stroop experiment may seek to counterbalance just
the combination of words and colors to be used (i.e., by
insuring that every word appears in every color). In addition
to providing a concise, formally rigorous description of

@ Springer

the experimental design, expression in factorial form also
aligns with standard approaches to statistical analysis;
for example, each factor (e.g., color and word) can be
represented as an effect in an analysis of variance (ANOVA)
or, more generally, as a regressor in an analysis using the
general linear model (GLM).

When an experimental design consists of a small
number of independent factors, each with a modest number
of levels, and all combinations of their levels can be
subjected to measurement, then generating the trials for
an experiment is straightforward: cross all of the factors,
generate every possible permutation of the crossings (i.e.,
sequences of trials), and use each permutation in a different
run of the experiment (this is often referred to as full
counterbalancing). However, for many designs this can be
difficult to achieve for one or more of several reasons.
First, the full crossing of all factors may generate too many
combinations of levels to sample in a single run of the
experiment (e.g., for a single participant to complete). To
illustrate this, consider a Stroop experiment with ten words,
ten colors and two additional factors: a task factor indicating
the task to be performed (i.e. whether to name the color or
read the word), and a task transition factor (task transition)
indicating whether the task on the current trial is repeated
or switched, relative to the previous trial. A full crossing of
all factors would require 10 x 10 x 2 x 2 = 400 trials to
include all combinations of levels—an experiment sequence
that may require too much time for a single participant to
complete. Second, even if the full crossing can be sampled
in a single run, there may be too many permutations (i.e.
possible trial orders) to sample over runs of the experiment.
To avoid a sampling bias, one could distribute all possible
runs of the experiment over participants; but this may
require too many participants. These challenges are often
met by writing a program that sub-samples from the full
crossing and permutation of sequences (i.e. trial orders).
Thus, for the first problem, the program might select a
subset of combinations of levels from the full crossing for
use in each run (e.g., only certain combinations of the
factors color, word, task or task transition in the Stroop
experiment), either randomly or by insuring that all possible
subsets are used across runs of the experiment (e.g., using
a Latin square design). For the second problem, sequences
can be drawn randomly from the full set of permutations (of
either the full crossing, or the subset of it used for each run).
In the Stroop experiment, this would amount to sampling,
for each participant, from the set of trial sequences in which
all factors (color, word, task transition) are fully crossed.

Sometimes, random sampling is sufficient to achieve an
adequately balanced sample of the different implementa-
tions of the design, in which case measurements across
runs are not biased in ways that confound interpreta-
tion. For more complicated designs, e.g., with sequential

Behav Res

constraints, random sampling can be combined with rejec-
tion and/or repair algorithms to satisfy all design con-
straints. For instance, in a more complicated design of the
Stroop experiment may demand that the color and word dis-
agree (e.g., that the color and word used on a given trial be
different than the ones used on the trial before and after it)
or that the task to be performed (i.e., reading the word vs.
naming the color) be repeated a maximum number of times
in a row. One could generate a valid trial sequence, by ran-
domly shuffling the counterbalanced set of factors in the
experiment. If the generated sequence satisfies all required
constraints (e.g., that colors and words in adjacent trials
are different from one another) it is accepted and otherwise
rejected. However, there are three problems that often arise
with this approach: 1) Random sampling with rejection may
be unlikely to yield experiment sequences that satisfy the
set of desired constraints. This issue is particularly prob-
lematic in designs in which researchers attempt to account
for sequential (across-trial) dependencies between experi-
ment factors (e.g., that both the word and the color switch
between all trials). 2) Even if a solution can be found, sim-
ple forms of randomization do not ensure that the samples
are unbiased. This is of particular concern when the factors
are not independent of one another (e.g., the factor task tran-
sition is dependent on the factor task), and especially when
there are sequential dependencies (e.g., that a task can only
be repeated for a certain number of trials). This can greatly
complicate, and in some cases seriously constrain how sub-
sets of factors can be crossed with one another, introducing
biases in the sampling process that can lead to unintended
(and often unrecognized) confounds in the design. 3) Even
when randomization is executed in a way that ensures an
unbiased design, it is often done using custom-written code
that can be difficult to understand and therefore replicate,
and is almost always specific to the particular experiment
and thus not more generally useful.

Factor dependencies and sequential constraints have
become increasingly common in cognitive psychological
studies, as researchers seek to implement more sophisticated
designs that more precisely address processes of interest
(e.g., the mechanisms responsible for switching attention
between tasks). Constructing algorithms that satisfy the
constraints of such designs, while uniformly sampling
(i.e., counterbalancing) all legal variants of the design,
can quickly become a challenge even for a professional
programmer. However, failure to do so may either not
yield the desired design and/or introduce unintended biases.
Indeed, as designs have become more complex, so too
has the frequency of confounds identified in such designs
(e.g., Allport & Wylie, 1999; Cooper & Mari-Beffa, 2008;
Jou, 2014; Logan & Schneider, 2010; Zmigrod & Hommel,
2013). Furthermore, even when appropriate algorithms are
used, the code that implements them is usually complex and

design-specific, posing problems for interpretability and
reproducibility (Mitkowski, Hensel, & Hohol, 2018, Peng,
2011; Sochat et al., 2016).

A number of software solutions have been proposed
to address the issues raised above. Some of them
are embedded in general-purpose packages for running
psychological and/or neuroscientific experiments, such as
PsychoPy (Peirce, 2007) or E-Prime (Schneider, Eschman,
& Zuccolotto, 2002). These enable basic counterbalancing
of experimental factors but do not allow the user to
impose complex constraints on the generated sequence.
More sophisticated solutions, tailored to the problem
of generating pseudorandom sequences, rely on iterative
rejection sampling2 (Mathot, 2016; van Casteren & Davis,
2006) or genetic algorithms (Klein et al., 2014; Wager &
Nichols, 2003). However, these methods do not permit to
sample experiment sequences uniformly from the space of
all possible solutions. Moreover, rejection sampling and
genetic algorithms are not guaranteed to identify a valid
experiment sequence, even if it exists. Finally, all existing
software solutions to experiment design are limited in that
they tie the specification of an experiment design to one
particular way of sampling that design. A novel approach is
needed to mitigate these limitations.

A new language for experimental design

To address the concerns raised above, we have developed
the first generation of a software tool that is designed to nar-
row the gap between the specification of an experimental
design and its implementation in trial-generating programs.
Our approach is to create a declarative language imple-
mented in Python for describing experimental designs in
factorial form, and then express the design in a format that
can be used by standard computational sampling algorithms
to ensure—as best as possible—that the trial sequences
generated are as unbiased as possible. That is, instead of
separately describing the intended design and then writ-
ing down a set of for loops and calls to random that
are intended to implement that design, an experimenter can
describe the design precisely in a language that is tailored to
the problem of experimental design. The generation of trials
from that description can then be fully automated, insur-
ing that it is done in a consistent and well-defined way,
and with the hope of providing increasingly strong guar-
antees about the statistical properties of generated trials as

2Jterative rejection sampling involves the following steps: (1) Append
the experiment sequence with a randomly selected trial, (2a) reject
the sampled trial if the appended experiment sequence fails to satisfy
all specified constraints or (2b) if the experiment sequence remains
valid, randomly sample the next trial and repeat steps (1) and (2) until
the experiment sequence is complete. Rejection sampling methods
may invoke additional repair algorithms to ensure that the generated
sequence remains valid.

@ Springer

Behav Res

the tool is improved by incorporating new advances in sam-
pling and sample analysis algorithms, and/or computational
power increases.

The language we describe, SweetPea, builds on the foun-
dation of factor-based design. In addition to independent
factors that can be crossed in various ways, the language
adds a notion of derived factors, which allow an experi-
menter to give names to properties of interest (e.g., whether
two properties of a stimulus are “congruent” or “incon-
gruent”). Finally, the experimenter can impose explicit
constraints on the factors, derived factors, and even the
relationship of different factors within a window of adja-
cent trials in the experiment. This combination of factors
and constraints directly addresses the growing complexity
of experimental designs in empirical sciences and machine
learning. Generating a run of the experiment corresponds to
sampling from the solution space of those constraints, ide-
ally with a guarantee of uniformity that avoids accidental
correlations in generated trials.

The implementation of SweetPea mirrors the design goal
of separating the “what” of experimental design from the
“how” of generating trials. Our language front-end converts
an experimental design into a constraint-solving problem,
where various constructs imply constraints on trial content
and order. The constraint problem then can be delegated to
a combination of custom and existing solvers and samplers
that act as the back-end of the implementation. This
structure substantially decouples the problem of creating an
expressive experiment-design language from the problem
of implementing it efficiently enough, so researchers can
explore both directions concurrently.

The SweetPea language is an open-source project’ and,
as such, work in progress. The development of SweetPea
focused on two fronts. First, with respect to expressiveness,
while the language has proven rich enough for several
designs of immediate interest (e.g., for which generating
trials by one-off programs has been challenging; see Section
Walkthrough Examples), it is still limited in a number
of ways. For example, it currently does not support the
weighted sampling of factor levels and weighted crossings
thereof. Our hope is that continued development (on our
part, and through community support), will refine and
expand the language and its semantics to cover a greater
range of experimental designs. Second, with respect to
sampling guarantees, we have not yet found a practical
solution to the problem of guaranteeing a uniform sample
of the space of all possible constraint solutions (valid
trial sequences); that general problem is an area of active
research in computer science, and we report on our
experience to date using currently available solutions.

3We invite contributions to SweetPea’s open-source repository (https://
github.com/sweetpea-org/).

@ Springer

However, by standardizing the expression of experimental
designs, and its interface with sampling methods, our
tool ensures that as advances are made in computational
algorithms for sampling and sample analysis, these can be
easily introduced into SweetPea, thus allowing experimental
design methods to readily leverage these advances.

Using SweetPea

SweetPea is a “language” in the sense that it defines
a vocabulary and set of abstractions for describing
experiments, but it is implemented as a library in Python. An
experiment description in SweetPea is a Python value that is
constructed with lists, objects, and primitive data types (e.g.,
strings or integers) that represent factor names and level
values. Passing an experiment description to SweetPea’s
synthesize_trials function generates a list of runs.
Each run in that result is reported as a dictionary mapping
factor names to level values, with one level value for each
trial in the run.

The interpretation of factor and level strings (e.g.,
interpreting a "color" factor’s "red" level to mean
that a stimulus should be displayed in the color red) is
outside the scope of SweetPea, but embedding SweetPea in
Python simplifies the bridge between trial generation and
presentation, since experiment-presentation systems, such
as PsychoPy (Peirce, 2007, 2009) or Expyriment (Krause
& Lindemann, 2014), are also available as Python libraries.
Similarly, SweetPea can interface with data processing
pipelines used to train artificial systems in Python, such
as PyTorch (Paszke et al., 2019) and TensorFlow (Abadi
et al., 2016), as well as simulation environments targeted
specifically at cognitive and neuroscientific models such as
PsyNeuLink (psyneulink.org).

Defining factors

Figure 1 shows the complete grammar of SweetPea
experiment descriptions in terms of Python values. For
example, the production [block, ...] means a list of
blocks values, and the production factor(factor_name,
[level value, ...]1) means an object produced by passing
a factor.name and a list of level values to the factor
function.

An experiment consists of one or more blocks, where
each block is a sequence of trials, and each trial combines
one level from each of the block’s factors. A factor is either
independent or derived, depending on whether its levels are
primitive data types (e.g., string or integer) or created by
the derived_level function. For example, consider the
Stroop experiment mentioned above, in which participants
are asked to name the color in which a color word is

https://github.com/sweetpea-org/
https://github.com/sweetpea-org/

Behav Res

experiment = block | [block, ...]

block = fully_cross_block(design, crossing, constraints)
design = [factor, ...]
crossing = [factor, ...]
constraints = [constraint, ...]
factor = factor(factor _name, [level value, ...1)
| factor(factor _name, [derived_level, ...])

derived_level = derived_level (level walue, derivation)

derivation = within_trial (predicate, [factor, ...])
transition(predicate, [factor, ...])
| window(stride, width, function, [factor, ...1)
predicate = a function from [level wvalue, ...] to boolean

constraint = exclude(factor_name, level value)
| at_most_k_in_a_row(k, levels)
| exactly_k_in_a_row(k, levels)
| no_more_than_k_in_a_row(k, levels)
| minimum_trials(¢rial_number)

levels = (factor_name, level value)
| factor

factor_name = a string

level_value =

a primitive data type (string, integer, float, boolean)

k, stride, width = a positive integer

Fig.1 SweetPea grammar

displayed. Each trial of the Stroop experiment consists
of the independent factors color and word that can be
defined as

color list = ["red", "green", "blue'"]
color = factor("color", color list)
word = factor("word", color_ list)

Note that color here is a Python variable, while
"color" is a factor name. A SweetPea experiment
description has factor names, not variables, but Python
variables are useful to give names to parts of SweetPea
experiments.

In a simple variant of the Stroop experiment, it may be
sufficient to fully cross the independent factors color and
word, and then randomize the order in which the trials
are drawn from the crossing to produce a block of trials.
In other cases, the experimenter may want to constrain
the occurrences of “congruent” trials (i.e., in which the
color and word match) versus “incongruent” trials (in which

they are different). This notion of congruence can be made
explicit by deriving it in terms of the color and word
factors:

congruent = derived level("con",
within trial (operator.eq, [color, word])
)

incongruent = derived level("inc",
within trial (operator.ne, [color, word])

)
congruence = factor ("congruence",
[congruent, incongruent])

A derived level such as congruent or incongruent
applies a predicate to levels drawn from other factors. The
levels might be candidates within a trial or across trials; the
within_trial function applies the predicate to candi-
date levels within a single trial, which is what is needed for
defining congruence in the example above. The predicate
given to within_trial must take the same number of
arguments as factors in a list given to within trial. In
the example, the Python predicate operator . eq expects
two arguments and returns True when they are the same,
while operator.ne returns True when two arguments
are different, so those predicates make sense given levels
from color and word as specified by [color, word].
Thus, the uses of within trial for congruent and
incongruent select complementary portions of the
color—word crossing. The derived_level function
assigns a name to each of those spaces, and the resulting lev-
els are combined with factor to define a congruence
factor. The factor function requires that each derived
level identifies a distinct portion of a crossing and that every
part of the crossing is covered by one of the levels.

If color, word, and congruence are declared to be
the factors of a block, then each trial in that block will have
a level for each of those three factors. For example, two
possible trials are

{ 'color’: ’'red’, ’'word’: ’‘green’, '
congruence’: ’‘inc’ }

{ "color’: 'red’, ’'word’': ’'red’, ! congruence
": ’con’ }

SweetPea’s print_experiments function can be
used to print these Python dictionaries more compactly:

color red | word blue | congruence inc

color red | word red | congruence con

The following is not a possible trial, because the derived
factor’s level is not consistent with the other factors’ levels:

color red | word blue | congruence con

While the congruence level could be inferred from the
color and word levels, a benefit of explicitly defining
congruence is that a block can then be specified
to be the crossing of, say, color and congruence,
which ensures that the block contains every color once

@ Springer

Behav Res

with each congruence. A possible block produced by
synthesize_trials in that case is

color red | word green | congruence inc

color red | word red | congruence con
color blue | word blue | congruence con
color green | word green | congruence con
color green | word red | congruence inc

color blue | word red | congruence inc

Note that this sequence does not include every possible
color-word combination, as would be produced by
instead crossing color and word. Crossing word and
congruence would also work, and would ensure that each
word appears twice within the block. Crossing all three
factors would fail and cause synthesize trials to
report an error, because some combinations of levels violate
the constraint inherent in the definition of congruence,
such as

color red | word blue | congruence con

Crossing and constraints

In addition to the constraints that are inherent to a
derived factor, an experimental design can also impose
other constraints on generated trials. Those may rule
out particular combinations of levels (i.e., portions of a
crossing), or they may constrain the order of combinations.
Typically and most usefully, some aspects of the trials
and ordering can remain unconstrained. For example, in
the cases above the order of trials within a crossing
is unconstrained, so that synthesize trials can
randomly select among all possible orderings. Similarly,
crossing color and congruence allows the word level
to vary randomly among the two possibilities for each
incongruent trial.

The general constructor to describe a block of trials is
fully_cross_block, which expects three arguments:

® design: Alist of all factors in the experiment. Every trial
in the block will have a single level value for each of
these factors.

® crossing: A subset of the factors in design that are to
be fully crossed in each run of the block. This crossing
imposes two constraints on the result: the minimum
number of trials per run is the product of the factor sizes,
and each of those runs must have the same number
of instances for every distinct combination of levels
among the factors.

® constraints: Additional constraints on either (a) the
minimum number of trials, (b) the order of the crossing
combinations, or (c) the factor levels in design that are
not in crossing.

@ Springer

As an example constraint, suppose that we want to
fully cross color and word in our Stroop experiment,
but we do not want two consecutive congruent trials.
The at most_k_in_a_row function lets us express this
constraint:

one con _at a time = at most k in a row(l, (
congruence, congruent))

The at_most_k_in_a_row, exactly k_in_ a_row,
and no_more_than k_in_a_row functions take a count
for “k” and one or more levels. A single level is specified
as a tuple of a factor_name and level_value, while
a factor argument indicates all of the levels of the factor,
effectively replicating the constraint for each level.

Assembling the factors and constraints into a block
completes the design of a single-block experiment:

design = [color, word, congruence]

crossing = [color, word]

constraints = [one con_at_a time]

block = fully cross _block(design, crossing,
constraints)

A potential run of this experiment is

color blue word green | congruence inc

color green word blue | congruence inc

|

|
color blue | word blue | congruence con

|

|

color blue word red | congruence inc
color green word red | congruence inc
color red | word red | congruence con

color red | word green | congruence inc
color green | word green | congruence con

color red | word blue | congruence inc

Note that trying to constrain the experiment to at most one
incongruent trial in a row would fail, because there are
more incongruent pairs than congruent pairs in a color—
word crossing, so adjacent incongruent trials are inevitable.
SweetPea’s synthesize_trials function reports an
error when constraints have no solution, but it cannot always
provide a simple explanation for why an experiment is
over-constrained.

Transitions and windows

The one_con_at_a_time constraint sets up a kind of
transition constraint, in that a congruent trial must transition
to an incongruent trial. SweetPea also supports a more direct
and general way of controlling transitions. For example,
suppose that each trial of our experiment should be related
to the previous trial by having either the same color
or the same text, but not both. By using transition
instead of within_trial, we can create a derived factor

Behav Res

that categorizes a trial as either changing exactly one
independent factor or both, relative to the previous trial:
def one diff (colors, words) :
if (colors[0] == colors[1l]):
return words[0] != words[1]
else:

return words[0] == words([1]

def both diff (colors, words):
return not one diff (colors, words)

one = derived level("one", transition(one diff
, [color, word]))

both = derived level ("both", transition/(
both diff, [color, word]))

changed = factor ("changed", [one, both])

Like within trial, the predicate provided to
transition must accept one argument for each factor
listed to transition. But while within trial getsa
level value for each argument, transition gets a list of
two level values for each argument. The first element in the
list is the previous trial’s value, and the second element in
the list is the current trial’s value. The one_diff predi-
cate here determines whether exactly one of the lists has the
same values for its two elements.
If we just add changed to our experiment, then the
result shows whether one of color and word change or
both:
color blue | word green | congruence inc
| changed
color green | word blue | congruence inc
| changed both

color blue | word blue | congruence con
| changed one

color blue | word red | congruence inc
| changed one

color green | word red | congruence inc
| changed one

color red | word red | congruence con
| changed one

color red | word green | congruence inc
| changed one

color green | word green | congruence con
| changed one

color red | word blue | congruence inc

| changed both

Notice that there is no changed value for the first trial,
since a trial needs a preceding trial to determine its transition
type. To rule out trials that change both color and word
relative to the previous one, we can add an exclude
constraint:

constraints = [one con_at _a time,

exclude (changed, both)]

As it happens, the one_con_at_a_time constraint
is now redundant, since a congruent trial must be
followed by one that changes one of color or word.

Such redundancies are not always obvious, however,
and including them in the design causes no problems.
With this new constraint, synthesize_trials cannot
generate the previous run, and it might instead generate
this one:

color blue | word green | congruence inc
| changed

color red | word green | congruence inc
| changed one

color red | word red | congruence con

| changed one

color red | word blue | congruence inc

| changed one

color green | word blue | congruence inc
| changed one

color blue | word blue | congruence con
| changed one

color blue | word red | congruence inc

| changed one

color green | word red | congruence inc
| changed one

color green | word green | congruence con
| changed one

Derived factors defined by transition can also be
included in an experiment’s crossing. For example, if
we define the experiment’s crossing to be color and
changed and omit further constraints, then a possible
experiment is

| color blue | word green | congruence

inc | changed

color red | text red | congruence con
| changed
color green | text green | congruence con
| changed both
color blue | text green | congruence inc

| changed one
color blue | text green | congruence inc |
changed both
color red | text blue | congruence inc |
changed both
color green | text blue | congruence inc |
changed one
color red | text blue | congruence inc |

changed one

In this experiment, each color is included once for
each changed, which is why the experiment includes six
trials to cover all combinations, plus one more at the start to
enable the the changed transition. Not every color and
word combination appears, since word has been removed
from the crossing. If we cross all three of color, word,
and changed, the resulting experiment would have 3 x 3 x
241 =19 trials.

The within_trial and transition functions
for derived levels are both shorthands for a general

@ Springer

Behav Res

window constructor. The general window form supports
relationships among any fixed number of trials, and it allows
the trials to be separated by a given stride within the run
instead of requiring them to be adjacent. We illustrate the
use of the window function in the walkthrough example
Designing a 2-Back Task.

Exporting experiment sequences

The process of designing an experiment is usually
followed by stimulus presentation and data collection.
Unlike other software packages, SweetPea does not
provide functionality for executing experiments. However,
as illustrated in Section Walkthrough Examples, SweetPea
allows the user to export experiment sequences obtained
from synthesize trials into a comma-separated
values (CSV) file, using

experiment_to csv(experiments, file prefix="
path/experiment")

The function experiment_to_csv accepts two argu-
ments, the second of which is optional. The first argu-
ment specifies the set of experiments to be exported,
i.e. the output of synthesize_trials. The second
argument file prefix specifies both the path and
the prefix of each experiment file. Executing this func-
tion will produce as many CSV files as dictionaries
are contained in the list experiments. In this exam-
ple, each CSV file will be located in the relative path
"path/experiment X.csv" where X corresponds to
the index of each experiment sequence in experiments.

The generated CSV files can be imported by the major-
ity of software packages used for stimulus presentation and
data collection, such as Psychtoolbox (Kleiner, Brainard,
& Pelli, 2007), PsychoPy (Peirce, 2009), OpenSesame
(Mathot, Schreij, & Theeuwes, 2012) or E-Prime (Schnei-
der, Eschman, & Zuccolotto, 2002). Thus, SweetPea can be
easily combined with other platforms for executing experi-
ments. For Python-based environments, SweetPea can also
be directly integrated into the programmatic workflow for
executing experiments (e.g., in PsychoPy (Peirce, 2007)
or in OpenSesame (Mathot, Schreij, & Theeuwes, 2012)),
as well as for running machine learning models and/or
machine learning algorithms (e.g., in TensorFlow (Abadi
et al., 2016), PyTorch (Paszke et al., 2019) or PsyNeuLink
(psyneulink.org).

Solving experimental designs

The simple Stroop experiment introduced introduced above
has only 9 trials in a full crossing of color and word.
Those 9 trials can be ordered in (3 x 3)! = 362, 880 ways.

@ Springer

For that scale, a practical implementation could simply
enumerate all permutations, filter ones that do not conform
to a constraint, and then randomly select from the rest.
Raising the number of color names from 3 to 5, however,
creates 25 elements in the crossing, which means 1.5 x
10> permutations; it’s still a tiny experiment, but generate-
all-and-filter is not remotely practical. For sufficiently
constrained experiments, even generate-one-and-test is not
practical, because the generated experiment is unlikely to
satisfy the constraints.

The SweetPea implementation can avoid generate-and-
test and instead use an external program to find a trial
sequence that crosses all specified factors and that satisfies
all indicated constraints (Cherkaev, 2019). The external
program is a SAT solver, which can find a solution to a
general logical formula (or report that no such solution
exists). In principle, finding a solution to an arbitrary
logical formula is intractably difficult. In practice, modern
SAT solvers have heuristics that efficiently find solutions.
SweetPea compiles the constraints that define an experiment
into a disjunctive normal form—a logical expression that a
SAT solver can recognize—and then it translates the SAT
solver’s answer back to experiment terms.

Using a SAT solver is good for finding one valid run of
an experiment. A second run can be generated by further
constraining the solution so that it’s different from the
first solution. While this strategy can be used to generate
multiple experiments, it unfortunately fails to solve one
problem raised above, which is to sample the space of
solutions uniformly; new solutions generated by simply
ruling out previous solutions might explore only a small part
of the solution space.

A SAT sampler can drive a SAT solver to explore the full
space of solutions. SweetPea uses Unigen2 (Chakraborty,
Meel, & Vardi, 2014) to implement uniform sampling
of small experimental designs.* Our attempt to use SAT
samplers for medium-to-large designs has not so far
been effective, however. The problem is that current SAT
samplers rely on a formula having a certain structure,
and the way that SweetPea currently encodes experiments
does not fit that structure. Indeed, the mismatch appears
to be fundamentally related to the problem of generating
permutations of possible trials, which suggests that no
encoding will work.

SAT solving and sampling can work for some experimen-
tal designs, generate-and-test can work for some designs,
and strategies that involve sampling from numbers with a
bijection between numbers and solutions can work in other
designs. By framing the problem in terms of a declara-
tive specification of an experiment, SweetPea separates the

“In future releases of SweetPea, we will leverage Unigend (https://
github.com/meelgroup/unigen).

https://github.com/meelgroup/unigen
https://github.com/meelgroup/unigen

Behav Res

problem of describing an experiment and generating the
experiment—much the same way that SAT solvers sepa-
rate the problem of specifying formulas and solving those
formulas.

Much of our ongoing work is about finding new
implementation strategies to ‘““solve” experiments and to
automatically determine which strategies will work for a
given experiment description. For now, SweetPea offers
a sampling strategy that can handle experiments without
constraints by just picking a random permutation among
the crossing. SweetPea also currently offers a strategy for
finding trial sequences for small-to-medium designs, which
can be found using a SAT solver without a sampler, but
it does not provide a guarantee of uniform sampling. New
samplers will likely involve a hybrid of these approaches.

Walkthrough examples

This section illustrates the application of SweetPea to three
different experimental design problems. The first design
problem (Stroop task) illustrates the use of basic and
derived factors, the second design problem (task switching)
introduces factors that describe transitions between two
trials, and the third design problem (2-Back task) requires
solving sequential dependencies between more than two
trials. We chose to focus on experiments that are commonly
used to study cognitive control (i.e., the ability to
flexibly pursue goal-directed behavior in the face of
distraction). However these experiments share similarities
with experiments in other domains of psychology, as well
as other empirical disciplines, such as neuroscience and
machine learning. Before walking through each example,
we describe the installation of SweetPea. We then focus on
each experiment, by first describing the experimental design
problem, then showing the code for expressing and solving
the problem in SweetPea, and finally walking the reader
line-by-line through the example code. In addition, each
example includes a solution for the design problem that was
identified by SweetPea. Due to their medium complexity,
the experiments described in this section are not amenable
to uniform sampling, so we sampled experiment solutions
non-uniformly from the space of possible solutions.
The reader may find examples that implement uniform
sampling, as well as other examples—both proof of concept
and for realistic experimental designs—online (https:/
sweetpea-org.github.io/). The materials for all walkthrough

I from sweetpea.primitives import factor,

2 from sweetpea.constraints import minimum_trials,

; from sweetpea import fully_cross_block,

print_experiments,

derived_level,

tabulate_experiments,

examples described in this section are available at https://
osf.io/b4nsy/.

Installation of SweetPea

The current version of SweetPea requires Python 3.7 or later
and can be installed in a local Python environment using

pip install sweetpea

Designing a Stroop Task

In previous sections we described the Stroop task (Stroop,
1935) in which participants are typically asked to name the
color in which a color word is displayed (e.g., say “green”
to the word RED displayed in green). Here, we consider the
Stroop color naming experiment with the two regular factors
described above: the color factor representing the color in
which the stimulus is displayed, and having four levels: red,
green, blue, brown; and the word factor representing the
word itself, also having four levels corresponding to each of
the colors (Fig. 2a). On a given trial, one level from each
factor is used to generate the stimulus, and the participant is
required to respond to the color factor, indicating the color
in which the word was displayed. For instance, they may be
required to press the left arrow key if the word was displayed
in red, the right arrow key if it was in green, the up arrow
key if it was in blue, the down arrow if it was in brown. This
results in a response factor with four levels: left, right, up
and down.

In the general case, an experimenter may want to ensure
that each color is paired with each word. This could be
achieved by crossing all colors with all words. The full
crossing of colors and words includes conditions in which
the color and the word are the same (congruent; e.g., the
word RED displayed in red), as well as conditions in
which they are different (incongruent; e.g., the written word
GREEN displayed in red). Together, the two conditions
define the congruency of a trial. In this particular
experiment, we wish to pair each color with each word,
subject to the constraint that only incongruent trials are
included. Finally, we wish to generate a minimum of 20
experiment trials. For the ease of the reader, we interleave
each chunk of code with an explanation of what it does for
the first Walkthrough Example. The full code implementing
the specified design is shown in Listing 1.

We begin with importing the SweetPea modules:

within_trial

exclude

synthesize_trials_non_uniform, \

experiment_to_csv

@ Springer

https://sweetpea-org.github.io/
https://sweetpea-org.github.io/
https://osf.io/b4nsy/
https://osf.io/b4nsy/

Behav Res

Modules in line 1 are needed to specify regular and
derived factors. Modules in line 2 are required to implement
design constraints, such as specification of the minimum
number of trials and the exclusion of factor levels. The

6 # color and word factors

3 color = factor("color",

9 word = factor("word", ["red",

["red", "green",

"green",

imported modules in lines 3 and 4 serve to generate, sample,
print, tabulate and export the final experiment.

We continue with defining the two basic factors color
and word,

"blue", "brown"])

"blue", "brown"])

as well as the response factor:

11 # response factor

12

13 def is_response_left(color):
return color == "red"

15 def is_response_right(color):

16 return color == "green"

7 def is_response_up(color):

8 return color == "blue"

19 def is_response_down(color):

20 return color == "brown"

22 response = factor("response", [

23 derived_level("left", within_trial(is_response_left, [color])),

24 derived_level("right", within_trial(is_response_right, [color])),

25 derived_level ("up", within_trial(is_response_up, [colorl)),

26 derived_level("down", within_trial(is_response_down, [color]))

27 1)

Levels of the response factor are dependent on the factor
color. Each of its derived levels is defined by a predicate
that takes as input the color factor describing the current
stimulus (lines 13-20). For instance, the following function
is used to define a leftward response:

def is_response_ left (color) :
return color == "red"

The function returns true if the factor color on a given
trial evaluates to the level "red". The function is used to
specify the derived level "1eft " in the definition of the

29 # congruency factor

31 def is_congruent(color, word):

32 return color == word

34 def is_incongruent(color, word) :

return not is_congruent (color, word)

factor response (lines 22-27):
derived level ("left", within trial
(is_response left, [color]l)),

The first argument specifies the level name"1left " The
second argument is the function within trial described
in Section Defining Factors. It passes the color factor of
the current trial to the is_response_left predicate, to
determine whether the factor response evaluates to the
level "1eft". The congruency factor is defined in a
similar fashion:

7 congruent = derived_level("congruent", within_trial(is_congruent, [color, wordl))
32 incongruent = derived_level("incongruent", within_trial(is_incongruent, [color, word]))
39
) congruency = factor("congruency", [
congruent ,
12 incongruent

@ Springer

Behav Res

A Stroop B Task Switching C 2-Back
— —— — Trial 1 —_—— — — — — Trial 1 —_—— — — - — —— — Trial 1 —_——
—_——
—_— ——
color: red color: red
d " d " letter: A
word: re :
red word: re A target: not defined
response: left congruency: congruent
Ture: not defined
congruency: congruent N———— task: color naming
———— N————
01 .
' Y\ response: left Trial 2 —_
— — — Trial 2 _——— task transition: not defined
red response transition: not defined (\
—— i
color: green Tetter: D
word: brown \ y, D target: not defined
: —— — — Trial 2 —_—— — — - .
brown | 7 e === —ma2}— o
i ———
congruency: incongruent i
— color: green b e — — Trial 3 ——
word: red
e e — — Trial 3 — — — congruency: incongruent
letter: D
—_—— N————"" sk color naming
color: red (Y\ task transition: repetition D :"’9“' o
blue word: blue response: right ure: yes
response: Teft red response transition: switch -
congruency: incongruent —— Trial 4 _=
—
N——)
e o Triala —_—— —— — — Trial 3 —_—— — — - Tetter: ¢
—_— wotor C target: no
. : green
color: brown 9 ure: no
b word: brown word: red
rown . congruency: incongruent
response: down 9 24 9 e — — — Trial 5 ——
congruency: congruent task: word reading
— (\ task transition: switch ()
response: right Tetter: D
red response transition: repetition D target: yes
Ture: no
——— ———
o o o
£ £ £
= = =
v v v

Fig. 2 Experimental designs used in examples. Each experiment can
be described as a sequence of trials. In each of the three examples,
a trial consists of one or two displays of a stimulus that appear in
sequence. The figure shows experiment factors (in bold) with their
respective levels (regular font) describing each trial. The reader may
refer to the text for a detailed description of each experiment. a Stroop
color naming experiment (Stroop, 1935). Participants are asked to indi-
cate the color in which a color word is displayed, in this case with
a button press. Relevant experiment factors include the color of the
word, the word itself, the correct response button associated with the
color, as well as stimulus congruency. A stimulus is considered con-
gruent if the color and word are the same, and incongruent otherwise.
b Cued task switching experiment (Meiran, 1996; Sudevan & Taylor,
1987). The same stimuli are used as in the Stroop experiment, however
in this case participants are instructed to press a button corresponding

Both levels of the congruency factor are dependent
on the color and word factors of the current trial. Thus,
the predicates specifying these levels take the color and
the word factors as arguments (lines 31-35). For instance,
a trial is considered congruent if the color and word of the
current trial match:

def is_congruent (color, word) :
return color == word

Note that the definition of the corresponding derived level
must include within_trial, with both color and
word as arguments (lines 37-38):

derived level ("congruent", within trial
(is_congruent, [color, word]))

either to the color of the stimulus (color naming) or to the word (word
reading). Each trial begins with the display of a shape cue that signals
which task to perform. A circle indicates that the color naming task
should be performed for the ensuing stimulus, and a square indicates
that the word reading task should be performed on that trial. Each trial
(except the first) can be characterized as a transition between tasks rel-
ative to the previous trial: Participants may either repeat the same task
or switch to a different task. The same applies to transitions between
responses from one trial to the next. ¢ 2-Back task (Cohen et al., 1997).
Participants are presented with a sequence of letters, and instructed to
press a button if the letter on the current trial matches the letter pre-
sented two trials back. The letter on the current trial is designated as a
“target” if it matches in this way, and is considered to be a “lure” if it
(a) is not a target and (b) matches the letter on the previous trial

The experiment code specifies two constraints:

15 # constraints

17 trial_constraint = minimum_trials (20)

15 exclusion_constraint = exclude(congruency, congruent)
19

50 constraints = [trial_constraint, exclusion_constraint]

First, it specifies the minimum number of trials (line
47). The minimum_trials constraint ensures that the
experiment sequence includes at least 20 trials. Note that a
full crossing of all valid trials (without 4 possible congruent
trials) requires a multiple of 4 x 4 — 4 = 12 trials. Thus,
minimum trials will not satisfy a full crossing unless

@ Springer

Behav Res

Listing 1 Example of a Stroop
task

@ Springer

o

from sweetpea.primitives import factor, derived_level, within_trial
from sweetpea.constraints import minimum_trials, exclude
from sweetpea import fully_cross_block, synthesize_trials_non_uniform, \

print_experiments, tabulate_experiments, experiment_to_csv

color and word factors

color = factor("color", ["red", "green", "blue", "brown"])

word = factor("word", ["red", "green", "blue", "brown"])

response factor

def is_response_left (color):
return color == "red"

def is_response_right(color):
return color == "green"

def is_response_up(color):
return color == "blue"

def is_response_down(color):

return color == "brown"

response = factor("response", [
derived_level("left", within_trial(is_response_left, [color])),
derived_level("right", within_trial(is_response_right, [colorl])),

derived_level("up", within_trial(is_response_up, [colorl)),
derived_level("down", within_trial(is_response_down, [colorl))

1p)

congruency factor

def is_congruent (color, word):

return color == word

def is_incongruent(color, word):

return not is_congruent (color, word)

congruent = derived_level("congruent", within_trial(is_congruent, [color, wordl))
incongruent = derived_level("incongruent", within_trial(is_incongruent, [color, word]))
congruency = factor("congruency", [

congruent ,

incongruent
1

constraints

trial_constraint = minimum_trials (20)
exclusion_constraint = exclude(congruency, congruent)
constraints = [trial_constraint, exclusion_constraint]

experiment

design = [color, word, response, congruency]

crossing = [color, word]

Behav Res

Listing 1 (continued)

5 block = fully_cross_block(design, crossing, constraints,

require_complete_crossing=False)

) experiments = synthesize_trials_non_uniform(block, 1)

61 print_experiments(block, experiments)

63 tabulate_experiments (experiments, crossing)

65 experiment_to_csv(experiments,

the specified minimum number of trials is a multiple of
12. To mitigate this issue, SweetPea successively samples
trials without replacement from counterbalanced blocks. In
this example, the first 12 trials are sampled from a block
of 12 counterbalanced trials, and the remaining 8 trials are
sampled without replacement from another counterbalanced
block.> The second constraint defines an exclusion criterion
according to which the level congruent of the factor
congruency is excluded from the experiment (line 48).
All factors to be included in the design are listed in line 50.
We continue with specifying the full experiment:

52 # experiment

1 design = [color, word, response, congruency]
5 crossing = [color, word]
6 block = fully_cross_block(design, crossing, constraints,

require_complete_crossing=False)

The entire experimental design is defined by the factors
color, word, response and congruency (line 54).
The crossing between all colors and all words is specified
in line 55. The design, crossing and constraints are used
to define a fully crossed experiment block (subject to said
constraints; lines 56-57). However, a complete crossing
between all colors and words is not possible because
we want to exclude all congruent trials for which the
color and the word match. Thus, fully cross_block
would return no solution to the experimental design
unless we allow the crossing to be incomplete, by setting
require_complete_crossing to False. We can

5The current version of SweetPea only supports this counterbalancing
scheme for experimental designs without transition factors and
transition constraints. The counterbalancing described in the text is
done independently for each experimental design. Future versions
of SweetPea will coordinate this counterbalancing scheme across
multiple experiment sequences, e.g., to allow for the counterbalancing
of remaining trials across participants (Latin square design).

file_prefix="experiment")

now generate, print, tabulate and save a desired sequence of
trials:

59 experiments = synthesize_trials_non_uniform(block, 1)

61 print_experiments (block, experiments)

62

63 tabulate_experiments(experiments, crossing)

5 experiment_to_csv(experiments, file_prefix="experiment")

Line 59 specifies how the experiment should be generated:

experiments = synthesize trials non uniform
(block, 1)

In this case, we sample the experiment block only once,
thus the argument 1. The function synthesize_trials
non_uniform solves for experiment sequences without
guaranteeing that they are sampled uniformly from the
space of all possible solutions (see Section Solving
Experimental Designs). We print the experiment in line 61,
yielding the following output (only first six lines are shown;
see Table 1 for the full output):

1 trial sequences found.
Experiment O0:

color brown | word red | response down |
congruency incongruent color green | word
red | response right | congruency
incongruent color brown | word blue |
response down | congruency incongruent
color red | word blue | response left |

congruency incongruent

To check the frequency of each factor combination, we
tabulate the generated experiment sequence for the factors
specified in the crossing (line 63). The generated table
lists the frequency and proportion of each factor level

@ Springer

Behav Res

Table 1 Example solution to a Stroop color naming design

Trial color word response congruency
1 brown red down incongruent
2 green red right incongruent
3 brown blue down incongruent
4 red blue left incongruent
5 brown green down incongruent
6 blue red up incongruent
7 red green left incongruent
8 green brown right incongruent
9 red brown left incongruent
10 green blue right incongruent
11 blue green up incongruent
12 blue brown up incongruent
13 blue brown up incongruent
14 green red right incongruent
15 brown blue down incongruent
16 red brown left incongruent
17 brown green down incongruent
18 blue red up incongruent
19 red green left incongruent
20 green brown right incongruent

combination (only first six lines of the output are shown; see
Table 2 for the full output):

Experiment 0:

color red | word red | frequency 0 |

proportion 0.0 %
color red | word green | frequency 2 |
proportion 10.0%

color red | word blue | frequency 1 |
proportion 5.0%

color red | word brown | frequency 2 |
proportion 10.0%
color green | word red | frequency 2 |

proportion 10.0%

Finally, we export the generated experiment sequence to
a CSV file named “experiment_0.csv”® into the local folder
(line 65).

Designing a task switching experiment

In many experiments, the sequence in which trials are
presented is an important part of the design. For example,

%Both the print_experiments and the experiment_to_csv
functions require a list of experiments. Here, we want to generate
just one experiment, so both functions will output one experiment
sequence.

@ Springer

Table 2 Frequencies and proportions of factor level combinations in
an example solution to the Stroop experiment (cf. Table 1)

color word frequency proportion
red red 0 0.0%
red green 2 10.0%
red blue 1 5.0%
red brown 2 10.0%
green red 2 10.0%
green green 0 0.0%
green blue 1 5.0%
green brown 2 10.0%
blue red 2 10.0%
blue green 1 5.0%
blue blue 0 0.0%
blue brown 2 10.0%
brown red 1 5.0%
brown green 2 10.0%
brown blue 2 10.0%
brown brown 0 0.0%

in task switching paradigms—used to study the flexibility
with which people can adapt their behavior—the transition
between trial types is an important factor. One example
of this is the cued task switching paradigm, in which
participants receive a task cue on every trial that instructs
them which of two (or more) tasks they should perform on
the current trial (Fig. 2b). The cue may instruct them either
to repeat the task from the previous trial (task repetition)
or to switch to a different task (task switch). A common
measure in such designs is the cost associated with task
switches—that is, reaction time or accuracy on switch
relative to repetition trials. Thus, the design must consider
task transition as a factor.

Here, we consider a task switching paradigm that
builds on the Stroop experiment described in the previous
example. In this experiment, participants are presented with
a sequence of Stroop stimuli (i.e., color words displayed
in a particular color). For simplicity, we consider only
two colors (red and green), resulting in two levels for the
color factor and two levels for the word factor. The task
factor indicates which of the two tasks the participant is
instructed to perform on a given trial, with two levels: color
naming (respond to the color in which the word is displayed)
and word reading (respond to the word). Thus, the correct
response on every trial depends on both the stimulus and the
relevant task. As in the previous example, we assume that
the participant responds by pressing one of two buttons, but
the stimulus-response mapping is the opposite for the two
tasks: for color naming, the left button should be pressed
for the color red and the right button for the color green;
conversely, for word reading, the right button should be

Behav Res

pressed for the word “red” and the left button for the word
“green”. Finally, there is a task transition factor, with two
levels: repeat (if the instructed task for the current trial is the
same as the last trial) and switch (if it is different).

In addition to the factors described above, it may also
be important to include a response transition factor, that
determines whether the response required on the current
trial (i.e., whether the left or right button is the correct
response) is the same or different as the one required on
the previous trial. For example, this response transition
factor has been shown to interact with performance costs
associated with task switches (Kiesel et al., 2010; Rogers
& Monsell, 1995). Thus, to control for this, it may be
important to ensure that the same number of response
transitions occurs in the task switch and task repetition
conditions. This can be done by specifying a full crossing of
the task transition, response transition, color, word and task
factors.

Fully crossing the factors described above will ensure
a balanced sampling of all combinations of their levels,
including types of task and response transitions, over
the course of the experiment. However, when selecting
trials to execute, it does not necessarily preclude the
possibility of undesired local sequences, or “runs”—that
is, sequences of trials in which some level of a factor
(e.g., whether the current trial is a task repetition or
response repetition) remains the same, or alternates in some
seemingly predictable but undesired way—for several trials
in a row. This could invite misleading expectations from the
participant, or otherwise impact performance in undesired
ways. While these could also be specified as higher level
factors, it can be more convenient to control for this by
imposing constraints on the number times a particular level
of a given factor, or a particular crossing of two or more
factors is allowed to occur in sequence. As an example,
here we limit task transitions to four of the same type, and
the number of consecutive response repetitions or response
switches to four. The code shown in Listing 2 implements
this design.

Lines 1-4 import the SweetPea modules needed to
specify the experiment as described for the previous
example. We also include transition (line 1) to define
factor levels based on transitions between trials.

Lines 8-10 define the three regular factors, color,
word and task. Lines 14-25 define the derived factor
congruency, as in the previous example (cf. Listing
1, lines 31-43). However, for conciseness, here the
derived_level function is directly passed to factor.

Lines 29-41 define the derived factor response.
The levels of this factor are defined by the two func-
tions is_response_left and is_response_right.
Note that each of the functions depends on the three

factors color, word and task. For instance, the
is_response_left function

def is response left(color, word, task):

return (task == "color naming" and color
== "red") or \

(task == "word reading" and word ==
"green")

implements the rule that the left response button should be
pressed if the task is "color naming" and the color is
"red" or if the task is "word reading" and the word is
"green",

The task transition factor is defined in lines 45-
56. The levels of this factor are dependent on the factor
task in the previous trial and the current trial. The
predicate 1s_task_repetition expresses this between-
trial dependency to define the task repetition level:

def is_task repetition(task) :
return task[0] == task[1]

In this example, the factor task is passed as an ordered
list with two elements. The first and second elements of
the list encode the task of the previous trial (task[0])
and the current trial (task([1]), respectively. If the
two are the same, the current trial is considered a task
repetition, and a task switch otherwise. Note that the derived
levels of task_transition are now defined using the
transition function. For instance,
derived level ("repetition",

transition(is_task repetition,
[task])),

defines the level "repetition" and wuses the
transition function to pass the factor task as a list
(encoding the task on the current and previous trial) to the
predicate is_task.repetition. Lines 60-71 define
response_transition in an analogous manner.

Lines 75-77 define constraints for the experiment.
The function nomore_than k_in_a_row in line 76
implements the sequential constraint that each level of
the factor task_transition cannot occur more than
four times in a row; the same is declared for the factor
response_transition in line 77.

Analogous to Listing 1, the design, the crossing, as well
as the constraints are integrated into an experiment (lines
81-84) that is first sampled non-uniformly (line 86), and
then printed (line 88).

The output shown in Table 3 illustrates one solution to the
specified design. Note that the factors task_transition
and response_transition are not defined for the
first trial of the experiment, simply because there exists
no preceding trial with the factors task and response,
respectively. Full counterbalancing of five factors, each of
which has two levels, requires at least 25 = 32 trials.

@ Springer

Behav Res

Listing 2 Example of a task
switching experiment

from sweetpea.primitives import factor, derived_level, within_trial, transition

2 from sweetpea.constraints import no_more_than_k_in_a_row

from sweetpea import fully_cross_block, synthesize_trials_non_uniform, \

4 print_experiments, tabulate_experiments

5 # color, word and task factors

8 color = factor("color", ["red", "green"])
9 word = factor("word", ["red", "green"])
10 task = factor("task", ["color naming", "word reading"])
11

12 # congruency factor

13

14 def is_congruent (color, word):

15 return color == word

16

17 def is_incongruent(color, word) :

18 return not is_congruent(color, word)

20 congruency = factor("congruency", [

21 derived_level ("congruent",

22 within_trial(is_congruent, [color, wordl)),

23 derived_level("incongruent",

24 within_trial(is_incongruent, [color, wordl))

25 1)

27 # response factor

29 def is_response_left(color, word, task):

30 return (task == "color naming" and color == "red") or \

31 (task == "word reading" and word == "green")

32 def is_response_right(color, word, task):

return (task == "color naming" and color == "green") or \
34 (task == "word reading" and word == "red")
6 response = factor("response", [

37 derived_level ("left",

38 within_trial(is_response_left, [color, word, task])),

39 derived_level ("right",

10 within_trial(is_response_right, [color, word, taskl]))

11 1)

13 # task transition factor

SweetPea adds an additional filler trial at the beginning of
the experiment sequence to accommodate the circumstance
that transition factors cannot be defined for the first trial
of an experiment. We can check the generated sequence
by breaking down the frequencies of every factor level
combination in the crossing (lines 90-91; Table 4). Note
that we instruct the tabulate_experiments function
to only consider all trials from the second trial (indexed as
1) to the last trial (denoted as 33) since we can ignore the
first filler trial.

@ Springer

Designing a 2-Back Task

Some experiments may involve factors that are dependent
on more than two consecutive trials. The function window
allows the user to define such factors in SweetPea. Here, we
illustrate its functionality in the design of an N-Back task—
a psychological task commonly used to assess working
memory performance, e.g., how well participants can update
and maintain task-relevant information over time. In the N-
Back task considered here, participants are presented with

Behav Res

Listing2 (continued)

16 return task[0] ==

18 def is_task_switch(task):

15 def is_task_repetition(task):

task [1]

19 return not is_task_repetition(task)

51 task_transition = factor("task_transition", [

52 derived_level("repetition",

transition(is_task_repetition, [task])),

derived_level ("switch",

transition(is_task_switch, [task]))

56 1)

8 # response transition factor

60 def is_response_repeat (response):

61 return response [0]

== response[1]

63 def is_response_switch(response):

6 return not is_response_repeat(response)

66 response_transition = factor("response_transition", [

67 derived_level("repetition",

68 transition(is_response_repeat, [responsel)),

69 derived_level ("switch",

711)

3 # constraints

75 constraints = [

0 transition(is_response_switch, [responsel]))

76 no_more_than_k_in_a_row (4, task_transition),

79 # experiment

no_more_than_k_in_a_row(4, response_transition)]

81 design = [color, word, task, congruency, response,

82 task_transition, response_transition]

83 crossing = [color, word, task, task_transition, response_transition]
84 block = fully_cross_block(design, crossing, constraints)

85

86 experiments = synthesize_trials_non_uniform(block, 1)

ss print_experiments(block, experiments)

90 tabulate_experiments (experiments, crossing,

91 trials=1list(range (1, 33)))

a sequence of letters, one letter per trial (Cohen et al.,
1997). Participants are instructed to press a button if the
letter on the current trial matches the letter some number
N trials back. For simplicity, we consider a 2-Back task
in which participants should press a button if the current
letter was presented N = 2 trials back (Fig. 2¢). The letter
factor describes which of the following letters is presented

on the current trial: “A”, “B”, “C”, “D”, “E”, “F”. The
target factor determines whether the letter on the current
trial matches the letter two trials back, in which case the
participant has to press the button. Finally, we consider a
trial to be a lure if (a) it isn’t a target trial but (b) the
letter on the current trial matches the letter one trial back.
Lure trails are important because they can help determine

@ Springer

Behav Res

Table 3 Example solution to a task switching design

Trial color word task congruency response task_transition response_transition
1 red green color naming incongruent left

2 red red word reading congruent right switch switch

3 green green color naming congruent right switch repetition
4 green red color naming incongruent right repetition repetition
5 green green word reading congruent left switch switch

6 green green word reading congruent left repetition repetition
7 red green color naming incongruent left switch repetition
8 red red color naming congruent left repetition repetition
9 green red color naming incongruent right repetition switch

10 red red word reading congruent right switch repetition
11 red green word reading incongruent left repetition switch

12 green red word reading incongruent right repetition switch

13 green green word reading congruent left repetition switch

14 red red color naming congruent left switch repetition
15 red green word reading incongruent left switch repetition
16 green red color naming incongruent right switch switch

17 red red color naming congruent left repetition switch

18 green red word reading incongruent right switch switch

19 green red color naming incongruent right switch repetition
20 green red word reading incongruent right switch repetition
21 green red word reading incongruent right repetition repetition
22 red red word reading congruent right repetition repetition
23 red green color naming incongruent left switch switch
24 red green color naming incongruent left repetition repetition
25 green green word reading congruent left switch repetition
26 red green word reading incongruent left repetition repetition
27 red red word reading congruent right repetition switch

28 red red color naming congruent left switch switch
29 green green color naming congruent right repetition switch
30 green green color naming congruent right repetition repetition
31 red green word reading incongruent left switch switch
32 green green color naming congruent right switch switch

33 red green color naming incongruent left repetition switch

whether, when participants make mistakes, it is because
they are having trouble remembering the letters themselves
(e.g., a problem with maintenance) or the order in which
they were presented (e.g., a problem with updating). It is
also possible that participants may be better at responding
to some letters than others. Measures of working memory
performance could be biased if those letters occur more
often in the experiment. This bias can be avoided by
ensuring that each letter is a target and a non-target for
equal numbers of trials. Previous studies address this issue
by sampling letters randomly. However, as discussed above,
random sampling of individual trials is only reliable if the
sample size is large. Experiments with a small number

@ Springer

of trials may risk confounding the target factor with the
letter factor. SweetPea can be used to address this problem
directly, by balancing the letter factor with the derived target
factor. Listing 3 shows SweetPea code that generates such
an experiment sequence.

Lines 1-3 import relevant SweetPea modules, as
described in the previous two examples. Note, however, that
we also include window (line 1) to derive factor levels from
sequences of more than two trials.

Lines 7-9 define the regular factor letter with its six
levels.

The target factor is defined in lines 13-21. The
predicates implementing each level of the factor target

Behav Res

Table 4 Frequencies and proportions of factor level combinations in an example solution to the task switching design (cf. Table 3)

color word task task_transition response_transition frequency proportion
red red color naming repetition repetition 1 3.125%
red red color naming repetition switch 1 3.125%
red red color naming switch repetition 1 3.125%
red red color naming switch switch 1 3.125%
red red word reading repetition repetition 1 3.125%
red red word reading repetition switch 1 3.125%
red red word reading switch repetition 1 3.125%
red red word reading switch switch 1 3.125%
red green color naming repetition repetition 1 3.125%
red green color naming repetition switch 1 3.125%
red green color naming switch repetition 1 3.125%
red green color naming switch switch 1 3.125%
red green word reading repetition repetition 1 3.125%
red green word reading repetition switch 1 3.125%
red green word reading switch repetition 1 3.125%
red green word reading switch switch 1 3.125%
green red color naming repetition repetition 1 3.125%
green red color naming repetition switch 1 3.125%
green red color naming switch repetition 1 3.125%
green red color naming switch switch 1 3.125%
green red word reading repetition repetition 1 3.125%
green red word reading repetition switch 1 3.125%
green red word reading switch repetition 1 3.125%
green red word reading switch switch 1 3.125%
green green color naming repetition repetition 1 3.125%
green green color naming repetition switch 1 3.125%
green green color naming switch repetition 1 3.125%
green green color naming switch switch 1 3.125%
green green word reading repetition repetition 1 3.125%
green green word reading repetition switch 1 3.125%
green green word reading switch repetition 1 3.125%
green green word reading switch switch 1 3.125%

receive a list as input, similar to levels for transition factors
described in the previous example. For instance,
def is_target (letter):
return letter[0] == letter[2]

expects a list labeled 1letter. Each element of the list
refers to a different trial within a specified window of trials
relative to the current trial. In the function is_target,
the argument coding for the factor letter is treated
as a window of size 3. The last element (letter[2])
refers to the letter on the current trial and the first element
(letter [0]) refers to the letter two trials back. A trial is
considered a target if the letter on the current trial matches
the letter two trials back. The window is specified in the

declaration of the derived level "Yes" for the target
factor (line 19):
derived level("yes", window(is_target,
[letter]l, 3, 1)),

window is given the predicate is_target that returns
true if the sequence satisfies requirements for this level.
It passes the list of factors [letter] to the function
is_target. The last two arguments of window define
the window size—the number of past trials to consider,
including the current trial—as well as the stride. The stride
determines the number of trials to skip between the trials
that are considered when selecting the new, derived level.
For instance, if we were to determine the presence of a target

@ Springer

Behav Res

Listing 3 Example of a 2-Back
experiment

3 print_experiments,

5 # letter factor

7 all_letters = ["A", "B",

9 letter = factor("letter",

target factor

13 def is_target(letter):

14 return letter [0] ==

15 def is_no_target(letter):

I from sweetpea.primitives import factor, derived_level, window
2 from sweetpea import fully_cross_block, synthesize_trials_non_uniform, \

tabulate_experiments

wgw, wpn, wE", wEn]

all_letters)

letter [2]

16 return not is_target(letter)

15 target = factor("target",

L

19 derived_level("yes", window(is_target, [letter], 3, 1)),

20 derived_level("no",

21 1)

23 # lure factor

window (is_no_target, [letter], 3, 1))

25 def is_lure(letter, target):

26 return target[1] == "no" and letter [0] == letter [1]
27 def is_no_lure(letter, target):
28 return not is_lure(letter, target)

30 lure = factor ("lure",

31 derived_level("yes", window(is_lure, [letter, targetl, 2, 1)),

32 derived_level("no",

331D

35 # experiment

window (is_no_lure, [letter, targetl, 2, 1))

7 design = [letter, target, lurel

38 crossing = [letter, target]

39 block = fully_cross_block(design, crossing, [])
10

Il experiments = synthesize_trials_non_uniform(block, 1)

3 print_experiments (block,

experiments)

15 tabulate_experiments (experiments, crossing,

16 trials=1list(range (2, 14)))

on every other trial (instead of every trial), we may specify
a stride of 2 (instead of a stride of 1).

Lines 25-33 define the lure factor in an analogous
manner, but using a window size of 2. Note that a trial is
considered a lure if it is not a target and if the letter on the
previous trial is the same as the letter on the current trial.

@ Springer

The is_lure predicate, used to determine whether a trial
is a lure, takes two arguments, letter and target,

def is_ lure(letter, target):
return target[l] == "no" and letter[0] ==
letter[1]

with both factors passed as a window of size two. Thus,

Behav Res

target [1] and letter [1] refer to the target and letter
factors, respectively, on the current trial and letter [0]
refers to the letter factor on the previous trial. The window
size of two trials for the predicate is_lure is specified in
line 31:

derived level ("yes", window(is_lure,
target], 2, 1))

[letter,

Finally, line 37 lists the factors to consider in the design
and line 38 defines the crossing between letter and
target. The design and crossing are embedded without
constraints in an experiment block (line 39). Line 41
generates an experiment sequence from the block with non-
uniform sampling. Line 43 displays the output. Table 5
shows an example output. Note that the target is not defined
for the first two trials and the lure is not defined for the first
trial due to a window size of two and one, respectively.

Finally, we validate the generated sequence by breaking
down the frequencies of every combination of factor levels
in the crossing (lines 45-46; Table 6). Here, we instruct
the tabulate_experiments function to only consider
trials from the third trial (indexed as 2) to the last trial
(indexed as 14) since we can ignore the first two filler trials.

Discussion

The SweetPea language is intended to provide a format for
describing experimental designs in a declarative form that
is: (a) as concise and natural as possible; (b) sufficiently
precise as to allow the application of standard computational
algorithms for sampling and sample analysis; and (c)
sufficiently general as to be useful for the widest possible
range of experimental applications. Fully achieving all

Table 5 Example solution to a 2-Back task design

Trial letter target lure
1 A

2 B no
3 B no yes
4 D no no
5 B yes no
6 D yes no
7 F no no
8 C no no
9 F yes no
10 C yes no
11 A no no
12 E no no
13 A yes no
14 E yes no

Table 6 Frequencies and proportions of factor level combinations in
an example solution to the 2-Back task design (cf. Table 5)

letter target frequency proportion
A yes 1 8.333%
A no 1 8.333%
B yes 1 8.333%
B no 1 8.333%
C yes 1 8.333%
C no 1 8.333%
D yes 1 8.333%
D no 1 8.333%
E yes 1 8.333%
E no 1 8.333%
F yes 1 8.333%
F no 1 8.333%

of these goals is of course a considerable challenge.
Here, we present a first implementation, that we hope
takes a meaningful step in this direction, by providing at
least one concrete formulation of how to approach these
challenges, that is already useful for some applications,
and that provides a foundation and benchmark for future
development.

As noted above, there are a number of existing
software packages that support experimental design. Table 7
compares SweetPea to some of these packages, including
E-Prime (Schneider et al., 2002), PsychoPy (Peirce, 2009),
OpenSesame (Mathot et al.,, 2012; Mathdt, 2016), Mix
(van Casteren & Davis, 2006) and GAMixit (Ihrke &
Behrendt, 2011). SweetPea differs from these packages
in several ways. First, SweetPea is a declarative language
for factorial design, allowing the user to specify the
logic of the entire experimental design (such as the
set of factors to be counterbalanced or the constraints
to be imposed on the experimental sequence) without
having to specify its implementation. Other packages,
such as Mix (van Casteren & Davis, 2006), require
the user to implement parts of the factorial design by
themselves (e.g., the user has to provide Mix with a full
list of possible factor-level combinations to be included
in the design) and are bound to a single sampling
method (e.g., rejection sampling with a specific repair
algorithm). Second, SweetPea introduces a novel approach
to solving for experimental sequences, by formulating
experimental design as a Boolean satisfiability problem.
This makes the space of solutions amenable to uniform
sampling, e.g., based on Unigen. The uniform sampling of
experiment sequences cannot be guaranteed if experimental
designs are realized via rejection sampling with subsequent
repair (Mathot, 2016; van Casteren & Davis, 2006)
or via genetic algorithms (lhrke & Behrendt, 2011;

@ Springer

Behav Res

Table 7 Comparison of software solutions for experimental design

Packages for experimental design & execution

Packages tailored to experimental design

E-Prime PsychoPy OpenSesame Mix GAMixit SweetPea

Implementation

Open Source X v v X v v

Language Interface X Python Python X X Python

GUI v v v v v X

Counterbalancing

Regular Factors v v v X X v

Derived Factors X X X X X v

Constraints

Algorithm N/A N/A Rejection Rejection Genetic Solver-aided
Sampling Sampling Algorithm Sampling
with Repair with Repair

Global X X v v v v

Transition X X v v v v

Window X X X v X v

Uniform Sampling X X X X X *

Exp. Execution v v v X X X

Implementations of software solutions vary based on whether they are open sourced, whether they are designed to interface with a programming
language and whether they provide a GUIL The counterbalancing scheme may include regular factors and/or derived factors. Software packages
may rely on specific algorithms to sample experiment sequences with respect to constraints. Such constraints include global constraints (e.g.
minimum number of trials or maximum occurance of a given factor level), constraints on transitions (e.g. maximum number of factor level
repetitions) or constraints on windows of trials (e.g. maximal occurance of certain patterns). Moreover, constrained experiment sequences may be
sampled uniformly from the space of all possible solutions or not. Note that some of the listed software solutions are embedded in larger packages

for stimulus presentation and data collection

v/ Functionality Supported x Functionality Not Supported * Functionality Supported in Future Release

Wager & Nichols, 2003), especially if complex sequential
constraints need to be taken into account. Another distinct
feature of SweetPea is that the user can derive novel
factors from regular factors—based on custom rules—
and can include these into the counterbalancing scheme.
However, unlike some experimental design packages
(e.g., GAMixit, OpenSesame or E-Prime), SweetPea
does currently not come with a graphical user interface
(GUI) and does not provide functionality for executing
experiments. Instead, the user may leverage SweetPea
to generate experimental sequences as part of a Python-
based programming environment for experiment execution
(e.g., using PsychoPy or OpenSesame) or import generated
experiment sequences as CSV files into their preferred
package for stimulus presentation, e.g., E-Prime (Schneider
et al., 2002) or Psychtoolbox (Kleiner et al., 2007).

The experimental design challenges addressed by Sweet-
Pea are faced by researchers in other domains, such as
neuroscience and machine learning. The measurement of
neural correlates is often confounded by the order in which
stimuli appear, especially if measurement techniques have
a low temporal resolution (Aarabi, Osharina, & Wallois,
2017, Gorgolewski, Storkey, Bastin, Whittle, & Pernet,

@ Springer

2013). SweetPea addresses this problem, by allowing the
user to counterbalance transition factors, and to impose
sequential constraints on the generated sequence of trials.
Another issue concerns proper sampling of training data
for machine learning systems. Improper sampling of stim-
uli can bias statistical learning systems to misrepresent the
space of all stimuli, leading to poor generalization perfor-
mance (Zadrozny, 2004). Machine learning researchers can
leverage SweetPea to specify the space of stimuli in terms
of factors and levels, and use it to generate counterbalanced
training data.

Despite the broad scope of experiments that can already
be expressed in SweetPea, there are several ways in
which the language can be improved. By making the
code available in an open-source repository (https://github.
com/sweetpea-org), we hope that the community can help
contribute to that effort. Toward that end, below we discuss
potentially valuable directions for further development.

Continuous factors SweetPea frames experimental design
as a Boolean satisfiability problem, and thus requires
that factors are composed of discrete levels. However,
some experiments may require continuous factors, such as

https://github.com/sweetpea-org
https://github.com/sweetpea-org

Behav Res

intertrial intervals or monetary rewards offered based on
participant performance. At present, SweetPea can represent
continuous factors by binning them into a limited set of
discrete levels. However, a more efficient strategy would be
to allow the user to sample these factors from pre-specified
distributions (e.g., sampling the factor “intertrial interval”
from an exponentially modified Gaussian distribution).

Uniform sampling of complex experimental designs The
current version of SweetPea can provide a SAT-sampler
(Unigen; Chakraborty et al., 2014) with a general logical
formula describing the experiment suitable for use by
automated sampling methods. Ideally, these would sample
uniformly from the space of all possible solutions to the
general logical formula provided by SweetPea. However,
the current generation of SAT-samplers are not efficient
enough to handle the scale of experimental designs that
can be formulated using SweetPea. The uniform sampling
of solutions to general logical formulas is still an area
of active research in computer science. SweetPea stands
to leverage progress made in this direction, by describing
experimental designs in a form that can be used by SAT-
samplers. In the future, this may make it possible to design
larger experiments with the guarantee that all constraints are
satisfied and solutions are uniformly sampled.

More constraints Constraints provide a convenient way of
expressing desired conditions for experimental sequences.
The user can currently specify a number of constraints in
SweetPea, e.g., to exclude trials with certain factor levels,
or to enforce a maximum number of factor level repetitions.
In future releases, we seek to expand the functionality
of SweetPea to include additional constraints, such as the
requirement that numeric factor levels of adjacent trials
must lie within a certain distance (e.g., that the monetary
reward provided in a trial can only be a certain amount
larger or smaller than the monetary reward on the previous
trial), as implemented by Mix (van Casteren & Davis, 2006).
However, it should be noted that many complex constraints
are already accommodated in the SweetPea language.
For instance, the numeric constraint may be enforced
by constructing a derived factor, indicating whether the
numeric distance in factor levels between two adjacent trials
is smaller than a certain amount, and by excluding levels
of this factor that violate this condition. Future releases of
SweetPea will allow the user to express these requirements
more naturally as single constraints.

Debugging experimental designs In some cases, a
researcher may over-constrain an experimental design, such
that there exists no possible experiment that satisfies all

constraints. In these cases, SweetPea can inform the user
that the experiment is overspecified. However, at present,
SweetPea can only offer limited insight into which con-
straints are in conflict with one another. Therefore, a useful
target for ongoing development of SweetPea would be tools
that aid researchers in debugging their experimental design.
This could involve iterative procedures that achieve par-
tial satisfiability by dropping design constraints with low
priority.

Automatic design specification Another useful avenue
for development would be to automatically derive the
minimal set of counterbalancing conditions that satisfies
the statistical analysis specified by the researcher. A major
goal of experimental design is to warrant proper statistical
inference from the data generated by the experiment. As
a consequence, counterbalancing schemes and sequential
constraints are often determined by the statistical analysis
that a researcher attempts to perform. For instance, a
researcher who seeks to contrast two levels of an experiment
factor with a Student’s t-test, would want to counterbalance
the two levels with respect to all levels of nuisance factors.
This can be achieved by distributing the levels of nuisance
factors uniformly across the levels of factors of interest.
SweetPea could assist in generating such a counterbalancing
scheme, but currently the specification itself would have
to be performed by the researcher. More generally, a
particularly promising direction for future work would
the integration of a high-level interface for specifying an
experimental design based on a desired statistical analysis
(e.g., contrasts defined by a Student’s t-test, ANOVA or
linear mixed model).

We plan to continue work along these lines, and hope
others will join us in this effort. Doing so offers the
promise of providing a rigorous and standardized method
for experimental design that would help avert many of
the problems that have been identified in past and current
experimental research.

Funding and Acknowledgements This project was made possible
through the support of a grant from the John Templeton Foundation,
as well as the National Science Foundation (NSF-1813123). The
opinions expressed in this publication are those of the authors and do
not necessarily reflect the views of the John Templeton Foundation.
We thank Markus Spitzer for providing helpful feedback on the
manuscript.

Availability of Data and Materials Data sharing is not applicable to this
article as no datasets were generated or analysed during the current
study. The materials for all walkthrough examples are available at
https://osf.io/b4nsy/.

Code Availability We invite contributions to SweetPea’s open-source
repository at https://github.com/sweetpea-org/.

@ Springer

https://osf.io/b4nsy/
https://github.com/sweetpea-org/

Behav Res

Declarations

Conflicts of Interest/Competing Interests The authors have no con-
flicts of interest to declare that are relevant to the content of this
article.

Ethics Approval, Consent to Participate and Consent for Publication
Ethics approval, consent to participate and consent for publication are
not applicable to this article as no datasets were generated or analysed
during the current study.

References

Aarabi, A., Osharina, V., & Wallois, F. (2017). Effect of confounding
variables on hemodynamic response function estimation using
averaging and deconvolution analysis: An event-related nirs study.
Neuroimage, 155, 25-49.

Abadi, M., Barham, P.,, Chen, J., Chen, Z., Davis, A., Dean, J.,
..., Zheng, X. (2016). Tensorflow: A system for large-scale
machine learning. In Proceedings of the 12th usenix conference
on operating systems design and implementation (pp. 265-283).
USA: USENIX Association.

Allport, A., & Wylie, G. (1999). Task-switching: Positive and negative
priming of task-set. In G. W. Humphreys, J. Duncan, & A.
Treisman (Eds.) Attention, space, and action: Studies in cognitive
neuroscience, (pp. 273-296): Oxford University Press.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter
optimization. The Journal of Machine Learning Research, 13(1),
365-376.

Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint,
J., Robinson, E. S., & Munafo, M. R. (2013). Power failure:
Why small sample size undermines the reliability of neuroscience.
Nature Reviews Neuroscience, 14(5), 365-376.

Chakraborty, S., Meel, K. S., & Vardi, M. Y. (2014). Balancing
scalability and uniformity in sat witness generator. In 2014 51st
acm/edac/ieee design automation conference (dac) (pp. 1-6).

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002).
Choosing multiple parameters for support vector machines.
Machine Learning, 46(1-3), 131-159.

Cherkaev, A. (2019). SweetPea: A language for experimental design
(Unpublished master’s thesis). The University of Utah Salt Lake
City.

Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll,
D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics
of brain activation during a working memory task. Nature,
386(6625), 604-608.

Cooper, S., & Mari-Beffa, P. (2008). The role of response repetition
in task switching. Journal of Experimental Psychology: Human
Perception and Performance, 34(5), 1198.

Dale, A. M. (1999). Optimal experimental design for event-related
fmri. Human Brain Mapping, 8(2-3), 109-114.

De Leeuw, J. R. (2015). jspsych: A javascript library for creating
behavioral experiments in a web browser. Behavior Research
Methods, 47(1), 1-12.

Dijksterhuis, A., Van Knippenberg, A., & Holland, R. W. (2014).
Evaluating behavior priming research: Three observations and a
recommendation. Social Cognition, 32(Supplement), 196-208.

Druery, C., & Bateson, W. (1901). Experiments in plant hybridization.
Journal of the Royal Horticultural Society, 26, 1-32.

Drummond, C. (2006). Machine learning as an experimental science
(revisited). In Aaai workshop on evaluation methods for machine
learning (pp. 1-5).

@ Springer

Gardner, M., Neumann, M., Grus, J., & Lourie, N. (2018). Writing
Code for NLP Research. In Proceedings of the 2018 conference
on empirical methods in natural language processing: Tutorial
abstracts. Melbourne: Association for Computational Linguistics.

Gorgolewski, K. J., Storkey, A. J., Bastin, M. E., Whittle, I., & Pernet,
C. (2013). Single subject fmri test-retest reliability metrics and
confounding factors. Neuroimage, 69, 231-243.

Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant,
D., Coenen, A., ..., Chan, P. (2016). psiturk: An open-source
framework for conducting replicable behavioral experiments
online. Behavior Research Methods, 48(3), 829-842.

Hartshorne, J. K., de Leeuw, J. R., Goodman, N. D., Jennings, M.,
& O’Donnell, T. J. (2019). A thousand studies for the price of
one: Accelerating psychological science with pushkin. Behavior
Research Methods, 51(4), 1782-1803.

Thrke, M., & Behrendt, J. (2011). Automatic generation of randomized
trial sequences for priming experiments. Frontiers in Psychology,
2,225.

Jou, J. (2014). Task-switching cost and repetition priming: Two
overlooked confounds in the fixed-set procedure of the sternberg
paradigm and how they affect memory set-size effects. Quarterly
Journal of Experimental Psychology, 67(10), 1871-1894.

Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K.,
Philipp, A. M., & Koch, 1. (2010). Control and interference in task
switching-a review. Psychological Bulletin, 136(5), 849.

Klein, R. A., Ratliff, K. A., Vianello, M., Adams, J.r. R. B., Bahnik,
S., Bernstein, M. J., ..., et al. (2014). Investigating variation in
replicability. Social Psychology, 45, 142-152.

Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in
psychtoolbox-3?

Krause, F., & Lindemann, O. (2014). Expyriment: A python library
for cognitive and neuroscientific experiments. Behavior Research
Methods, 46(2), 416-428.

Kiihberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in
psychology: A diagnosis based on the correlation between effect
size and sample size. PloS One, 9(9), e105825.

Langley, P. (1988). Machine learning as an experimental science.
Machine Learning, 3(1), 5-8.

Logan, G. D., & Schneider, D. W. (2010). Distinguishing reconfigura-
tion and compound-cue retrieval in task switching. Psychologica
Belgica, 50(3), 413-433.

Mathét, S. (2016). A package for pseudorandomization of datamatrix
objects. https://github.com/open-cogsci/python-pseudorandom.
GitHub.

Mathét, S., Schreij, D., & Theeuwes, J. (2012). Opensesame: An
open-source, graphical experiment builder for the social sciences.
Behavior Research Methods, 44(2), 314-324.

Mayr, U., & Keele, S. W. (2000). Changing internal constraints on
action: The role of backward inhibition. Journal of Experimental
Psychology: General, 129(1), 4-26.

Meiran, N. (1996). Reconfiguration of processing mode prior to
task performance. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 22(6), 1423-1442.

Mendel, G. (1866). Versuche uber pflanzen-hybriden. Verhandlungen
des naturforschenden Vereins in Brunn fur, 4, 3-47.

Mitkowski, M., Hensel, W. M., & Hohol, M. (2018). Replicability
or reproducibility? On the replication crisis in computational
neuroscience and sharing only relevant detail. Journal of
Computational Neuroscience, 45(3), 163-172.

Miller, G. (2011). The mating mind: How sexual choice shaped the
evolution of human nature. Anchor.

Myung, J. L., & Pitt, M. A. (2009). Optimal experimental design for
model discrimination. Psychological review, 116(3), 499.

Open Science Collaboration, et al. (2015). Estimating the reproducibil-
ity of psychological science. Science, 349(6251), 1-10.

https://github.com/open-cogsci/python-pseudorandom

Behav Res

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., ..., et al. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural
information processing systems (pp. 8026-8037).

Peirce, J. W. (2007). Psychopy-psychophysics software in python.
Journal of Neuroscience Methods, 162(1-2), 8—13.

Peirce, J. W. (2009). Generating stimuli for neuroscience using
psychopy. Frontiers in Neuroinformatics, 2, 10.

Peng, R. D. (2011). Reproducible research in computational science.
Science, 334(6060), 1226-1227.

Rogers, R. D., & Monsell, S. (1995). Costs of a predictible
switch between simple cognitive tasks. Journal of Experimental
Psychology: General, 124(2), 207-231.

Rossi, J. S. (1990). Statistical power of psychological research: What
have we gained in 20 years? Journal of Consulting and Clinical
Psychology, 58(5), 646.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-prime: User’s
guide. reference guide getting started guide. Psychology Software
Tools, Incorporated.

Sherman, R., & Pashler, H. (2019). Powerful moderator variables
in behavioral science? Don’t bet on them (version 3). PsyArXiv
preprint: https://psyarxiv.com/c65wm/

Sochat, V. V., Eisenberg, I. W., Enkavi, A. Z., Li, J., Bissett,
P. G., & Poldrack, R. A. (2016). The experiment factory:
Standardizing behavioral experiments. Frontiers in Psychology, 7,
610. https://doi.org/10.3389/fpsyg.2016.00610

Stroebe, W., & Strack, F. (2014). The alleged crisis and the illusion
of exact replication. Perspectives on Psychological Science, 9(1),
59-71.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions.
Journal of Experimental Psychology, 18(6), 643.

Sudevan, P., & Taylor, D. A. (1987). The cuing and priming
of cognitive operations. Journal of Experimental Psychology:
Human Perception and Performance, 13(1), 89.

van Casteren, M., & Davis, M. H. (2006). Mix, a program for
pseudorandomization. Behavior Research Methods, 38(4), 584—
589.

Wager, T. D., & Nichols, T. E. (2003). Optimization of experimental
design in fmri: A general framework using a genetic algorithm.
Neuroimage, 18(2), 293-3009.

Wells, G. L., & Windschitl, P. D. (1999). Stimulus sampling and social
psychological experimentation. Personality and Social Psychology
Bulletin, 25(9), 1115-1125.

Zadrozny, B. (2004). Learning and evaluating classifiers under sample
selection bias. In Proceedings of the twenty-first international
conference on machine learning (pp. 114—121).

Zmigrod, S., & Hommel, B. (2013). Feature integration across
multimodal perception and action: A review. Multisensory
Research, 26(1-2), 143-157.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

https://psyarxiv.com/c65wm/
https://doi.org/10.3389/fpsyg.2016.00610

	SweetPea: A standard language for factorial experimental design
	Abstract
	Introduction
	Experimental design
	Factorial structure vs. implementation constraints
	A new language for experimental design

	Using SweetPea
	Defining factors
	Crossing and constraints
	Transitions and windows
	Exporting experiment sequences

	Solving experimental designs
	Walkthrough examples
	Installation of SweetPea
	Designing a Stroop Task
	Designing a task switching experiment
	Designing a 2-Back Task

	Discussion
	Continuous factors
	Uniform sampling of complex experimental designs
	More constraints
	Debugging experimental designs
	Automatic design specification

	Declarations
	References

