
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Recovering Quantitative Models of Human Information Processing with Differentiable 
Architecture Search

Permalink
https://escholarship.org/uc/item/9wd571ts

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN
1069-7977

Author
Musslick, Sebastian

Publication Date
2021
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9wd571ts
https://escholarship.org
http://www.cdlib.org/


Recovering Quantitative Models of Human Information Processing
with Differentiable Architecture Search

Sebastian Musslick (musslick@princeton.edu)
Princeton Neuroscience Institute, Princeton University

Princeton, NJ 08544, USA

Abstract

The integration of behavioral phenomena into mechanistic
models of cognitive function is a fundamental staple of cog-
nitive science. Yet, researchers are beginning to accumulate
increasing amounts of data without having the temporal or
monetary resources to integrate these data into scientific the-
ories. We seek to overcome these limitations by incorporat-
ing existing machine learning techniques into an open-source
pipeline for the automated construction of quantitative models.
This pipeline leverages the use of neural architecture search to
automate the discovery of interpretable model architectures,
and automatic differentiation to automate the fitting of model
parameters to data. We evaluate the utility of these methods
based on their ability to recover quantitative models of human
information processing from synthetic data. We find that these
methods are capable of recovering basic quantitative motifs
from models of psychophysics, learning and decision making.
We also highlight weaknesses of this framework and discuss
future directions for their mitigation.
Keywords: autonomous empirical research; computation
graph; continuous relaxation; NAS; DARTS; AutoML

Introduction
The process of developing a mechanistic model of cogni-
tion incurs two challenges: (1) identifying the architecture
of the model, i.e. the composition of functions and param-
eters, and (2) tuning parameters of the model to fit experi-
mental data. While there are various methods for automating
the fitting of parameters, cognitive scientists typically lever-
age their own expertise and intuitions to identify the architec-
ture of a model—a process that requires substantial human
effort. In machine learning, interest has grown in automating
the construction and parameterization of neural networks to
solve machine learning problems more efficiently (He, Zhao,
& Chu, 2021). This involves the use of neural architecture
search (NAS) for automating the discovery of model architec-
tures (Elsken, Metzen, Hutter, et al., 2019), and the use of au-
tomatic differentiation to automate parameter fitting (Paszke
et al., 2017). This combination of methods has led to break-
throughs in the automated construction of neural networks
that are capable of outperforming networks designed by hu-
man researchers (e.g. in computer vision: Mendoza, Klein,
Feurer, Springenberg, & Hutter, 2016). In this study, we ex-
plore the utility of these methods for constructing quantitative
models of human information processing.

To ease the application of NAS to the discovery of a quanti-
tative model, it is useful to treat quantitative models as neural
networks or, more generally, as computation graphs. In this

article, we introduce the notion of a computation graph and
describe ways of expressing the architecture of a quantitative
model in terms of a such a graph. We then review the use of
differentiable architecture search (DARTS; Liu, Simonyan, &
Yang, 2018) for searching the space candidate computation
graphs, and introduce an adaptation of this method for dis-
covering quantitative models of human information process-
ing. We evaluate two variants of DARTS—regular DARTS
(Liu et al., 2018) and fair DARTS (Chu, Zhou, Zhang, & Li,
2020)—based on their ability to recover three different mod-
els of human cognition from synthetic data, to explain behav-
ioral phenomena in psychophysics, learning and perceptual
decision making. Our results indicate that such algorithms
are capable of recovering computational motifs found in these
models. However, we also discuss further developments
that are needed to expand the scope of models amenable
to DARTS. Reported simulations (https://github.com/
musslick/DARTS-Cognitive-Modeling) are embedded in
a documented open-source framework for autonomous em-
pirical research (www.empiricalresearch.ai) and can be
extended to explore other search methods.

Quantitative Models as Computation Graphs
A broad class of complex mathematical functions—including
the functions expressed by a quantitative model of human in-
formation processing—can be formulated as a computation
graph. A computation graph is a collection of nodes that are
connected by directed edges. Each node denotes an expres-
sion of a variable, and each outgoing edge corresponds to a
function applied to this variable (cf. Figure 1D). The value
of a node is typically computed by integrating over the result
of every function (edge) feeding to that node. Akin to quanti-
tative models of cognitive function, a computation graph can
take experiment parameters as input (e.g. the brightness of
two visual stimuli), and can transform this input through a
combination of functions (edges) and latent variables (inter-
mediate nodes) to produce observable dependent measures as
output nodes (e.g the probability that a participant is able to
detect the difference in brightness between two stimuli).

The expression of a formula as computation graph can be
illustrated with Weber’s law (Fechner, 1860)—a quantitative
hypothesis that relates the difference between the intensities
of two stimuli to the probability that a participant can detect
this difference. It states that the just noticeable difference
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(JND; the difference in intensity that a participant is capable
of detecting in 50% of the trials) amounts to

∆I = c · I (1)

where ∆I is the JND, I corresponds to the intensity of the
baseline stimulus and c is a constant. The probability of de-
tecting the difference between two stimuli, I and I, can then
be formulated as a function of the two stimuli (with I < I),

P(detected) = σlogistic((I− I)−∆I) (2)

where σlogistic is a logistic function. Figure 1D depicts the
argument of σlogistic as a computation graph for c = .. The
graph encompasses two input nodes, one representing x = I
and the other x = I. The intermediate node x expresses
∆I which results from multiplying I with the parameter c =
.. The addition and subtraction of I and I, respectively,
result in their difference (I− I) and are represented by the
intermediate node x. The linear combination of x and x in
the output node r resembles the argument to σlogistic.

The automated construction of a mathematical hypothe-
sis, like Weber’s law, can be formulated as a search over
the space of all possible computation graphs. Machine learn-
ing researchers leverage the notion of computation graphs to
represent the composition of functions performed by a com-
plex artificial neural network (i.e. its architecture), and de-
ploy NAS to search a space of computation graphs. Although
some level of specification of the graph remains with the re-
searcher, NAS relieves the researcher from searching through
these possibilities.

Identifying Computation Graphs
with Neural Architecture Search

NAS refers to a family of methods for automating the dis-
covery of useful neural network architectures. There are a
number of methods to guide this search, such as evolutionary
algorithms, reinforcement learning or Bayesian optimization
(for a recent survey of NAS search strategies, see Elsken et
al., 2019). However, most of these methods are computation-
ally demanding due to the nature of the optimization prob-
lem: The search space of candidate computation graphs is
high-dimensional and discrete. To address this problem, Liu
et al. (2018) proposed DARTS which relaxes the search space
to become continuous, making architecture search amenable
to gradient decent. The authors demonstrate that DARTS
can yield useful network architectures for image classification
and language modeling that are on par with architectures de-
signed by human researchers. In this work, we assess whether
variants of DARTS can be adopted to automate the discovery
of interpretable quantitative models to explain human infor-
mation processing.

Regular DARTS
Regular DARTS treats the architecture of a neural network
as a directed acyclic computation graph (DAG), containing
N nodes in sequential order (Figure 1). Each node xi cor-
responds to a latent representation of the input space. Each

directed edge ei, j is associated with some operation oi, j that
transforms the representation of the preceding node i, and
feeds it to node j. Each intermediate node is computed by
integrating over its transformed predecessors:

x j =
∑
i< j

oi, j (xi) . (3)

Every output node is computed by linearly combining all
intermediate nodes projecting to it. The goal of DARTS is
to identify all operations oi, j of the DAG. Following Liu et
al. (2018), we define O = {oi, j,o


i, j, . . . ,o

M
i, j} to be the set of

M candidate operations associated with edge ei, j where ev-
ery operation om

i, j(xi) corresponds to some function applied to
xi (e.g. linear, exponential or logistic). DARTS relaxes the
problem of searching over candidate operations by formulat-
ing the transformation associated with an edge as a mixture
of all possible operations in O (cf. Figure 1A-B):

ōi, j(x) =
∑
o∈O

exp(αo
i, j)∑

o ′∈O exp(αo ′
i, j)
·oi, j(x). (4)

where each operation is weighted by the softmax transfor-
mation of its architectural weight αo

i, j. Every edge ei, j is as-
signed a weight vector αi, j of dimension M, containing the
weights of all possible candidate operations for that edge. The
set of all architecture weight vectors α= {αi, j} determines the
architecture of the model. Thus, searching the architecture
amounts to identifying α. The key contribution of DARTS
is that searching α becomes amenable to gradient descent af-
ter relaxing the search space to become continuous (Equation
(4)). However, minimizing the loss function of the model
L(w,α) requires finding both α∗ and w∗—the parameters of
the computation graph.1 Liu et al. (2018) propose to learn α

and w simultaneously using bi-level optimization:

min
α

Lval (w∗(α),α)

s.t. w∗(α) = argmin
w

Ltrain(w,α).
(5)

That is, one can obtain α∗ through gradient descent, by
iterating through the following steps:

1. Obtain the optimal set of weights w∗ for the current archi-
tecture α by minimizing the training loss Ltrain(w,α).

2. Update the architecture α (cf. Figure 1C) by following the
gradient of the validation loss ∇Lval (w∗,α).

Once α∗ is found, one can obtain the final architecture by
replacing ōi, j with the operation that has the highest architec-
tural weight, i.e. oi, j← argmaxoα∗oi, j (Figure 1D).

Fair DARTS
One of the core premises of regular DARTS is that different
candidate operations compete with one another in determin-
ing the transformation applied by an edge. This results from

1This includes the parameters of each candidate operation om
i, j.
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Figure 1: Learning computation graphs with DARTS. The
nodes and edges in a computation graph correspond to vari-
ables and functions (operations) performed on those vari-
ables, respectively. (A) Edges represent different candidate
operations. (B) DARTS relaxes the search space of opera-
tions to be continuous. Each intermediate node (blue) is com-
puted as a weighted mixture of operations. The (architectural)
weight of a candidate operation in an edge represents the con-
tribution of that operation to the mixture computation. Output
nodes (green) are computed by linearly combining all inter-
mediate nodes. (C) Architectural weights are trained using
bi-level optimization, and used to sample the final architec-
ture of the computation graph, as shown in (D).

the softmax function in Equation (4): Increasing the architec-
tural weight αo

i, j of operation o suppresses the contribution of
other operations o ′ 6= o. As a consequence, regular DARTS is
biased to prefer operations that yield larger gradients (e.g. an
exponential function) over operations with smaller gradients
(e.g. a logistic function). To address this problem, Chu et al.
(2020) propose to replace the softmax function in Equation
(4) with a sigmoid function such as the logistic function,

ōi, j(x) =
∑
o∈O



+ exp(−αo
i, j)
·oi, j(x). (6)

This introduces a cooperative (“fair”) mechanism for de-
termining the transformation of an edge, allowing each oper-
ation to contribute in a manner that is independent from the
architectural weights of other operations. To facilitate dis-
crete encodings of the architecture, Chu et al. (2020) intro-
duce a supplementary loss L− that forces the sigmoid value
of architectural weights toward one or zero:

L− =−w−


N

N∑
l

(


+ exp(−αl)
−.

)
(7)

where N corresponds to the total number of architectural
weights and w− determines the contribution of L− to the
total loss. Here, we set w− = .

Adapting DARTS for Autonomous Cognitive Modeling
We adopt the framework from Liu et al. (2018) by represent-
ing quantitative models of information processing as DAGs,

and seek to automate the discovery of model architectures by
differentiating through the space of operations in the under-
lying computation graph. To map computation graphs onto
quantitative models of cognitive function, we separate the
nodes of the computation graph into input nodes, intermedi-
ate nodes and output nodes. Every input node corresponds to
a different independent variable (e.g. the brightness of a stim-
ulus) and every output node corresponds to a different depen-
dent variable (e.g. the probability of detecting the stimulus).
Intermediate nodes represent latent variables of the model and
are computed according to Equation (3), by applying an op-
eration to every predecessor of the node and by integrating
over all transformed predecessors.2 For the simulation ex-
periments reported below, we consider eight candidate oper-
ations which are summarized in Table 1, including a “zero”
operation to indicate the lack of a connection between nodes.
Similar to Liu et al. (2018), we compute every output node r j
by linearly combining all intermediate nodes:

r j =

K+S∑
i=S+

vi, jxi (8)

where vi, j ∈ w is a trainable weight projecting from inter-
mediate node xi to the output node r j, S corresponds to the
number of input nodes and K to the number of intermediate
nodes. We seek to identify simple scientific models that—
unlike complex neural networks—must be parsable by hu-
man researchers. To warrant interpretability of the model, we
constrain all nodes to be scalar variables, i.e. xi,r j ∈ R×.

Our goal is to identify a computation graph that can pre-
dict each dependent variable from all independent variables.
Thus, we seek to minimize, for every dependent variable j,
the discrepancy between every output of the model r j and the
observed data t j. This discrepancy can be formulated as a
mean squared error (MSE), LMSE(r j, t j |w,α), that is contin-
gent on both the architecture α and the parameters in w. In
addition, we seek to minimize the complexity of the model,

Lcomplexity = γ

∑
i

∑
j

∑
m

p(om
i, j) (9)

where p(om
i, j) corresponds to the complexity of a candi-

date operation, amounting to one plus the number of trainable
parameters (see Table 1), and γ scales the degree to which
complexity is penalized. Following the objective in Equa-
tion (5), we seek to minimize the total loss, Ltotal(w,α) =
LMSE(r j, t j |w,α)+Lcomplexity, by simultaneously finding α∗

and w∗, using gradient descent.3

Experiments and Results
Identifying the architecture of a quantitative model is an am-
bitious task. Consider the challenge of constructing a DAG
to explain the relationship between three independent vari-
ables and one dependent variable, with only two latent vari-
ables. Assuming a set of eight candidate operations per edge

2Predecessors include both input and intermediate nodes.
3Fair DARTS adds L− (Equation 7) to the total loss.
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Table 1: Search space of candidate operations o(x) ∈ O and
their complexity p(o). Note that parameters a,b∈w are fitted
separately for every om

i, j.

Description o(x) p(o)
zero 0
addition +x 1
subtraction −x 1
multiplication a · x 2
linear function a · x+b 3
exponential function exp(a · x+b) 3
rectified linear function ReLU(x) 1
logistic function σlogistic(x) 1

for a total number of seven edges, there are  possible ar-
chitectures to explore and endless ways to parameterize the
chosen architecture. Adding one more latent variable to the
model would expand the search space to  possible archi-
tectures. DARTS offers one way of automating this search.
However, before applying DARTS to explain human data, it is
worth assessing whether this method is capable of recovering
computational motifs from a known ground truth. Therefore,
we seek to evaluate whether DARTS can recover established
quantitative models of human cognition from synthetic data.

As detailed below, we assess the performance of two vari-
ants of DARTS—regular DARTS and fair DARTS—in recov-
ering three distinct computational motifs in cognitive psy-
chology (see Test Cases). For each test case, we vary the
number of intermediate nodes k ∈ {,,} and the com-
plexity penalty y ∈ {,.,.,.,.} across architecture
searches, and initialize each search with ten different seeds.

When evaluating instantiations of NAS, it is important to
compare their performance against baselines (Lindauer &
Hutter, 2020). In many cases, random search can yield re-
sults that are comparable to more sophisticated NAS (Li &
Talwalkar, 2020; Xie, Kirillov, Girshick, & He, 2019). Thus,
we seek to compare the average performance of each search
condition against random search. To enable a fair compari-
son, we allow random search to sample and evaluate archi-
tectures without replacement for the same amount of time it
took either regular DARTS or fair DARTS (whichever took
more time). Finally, we used the same training and evalua-
tion procedure across all search methods.

Training and Evaluation Procedure
For each test case, we used 40% of the generated data set
to compute the training loss, and 10% to compute the vali-
dation loss, to optimize the objective stated in Equation (5).
We evaluated the performance of the architecture search on
the remaining 50% of the data set (test set). Experiment se-
quences for each data set were generated with SweetPea—a
programming language for automating experimental design
(Musslick, Cherkaev, et al., 2020).

For each test case and each search condition, we optimized
the architecture according to Equation (5), using stochas-
tic gradient descent (SGD). To identify w∗, we optimized w
for the selected training set over  epochs with a cosine
annealing schedule (initial learning rate = ., minimum

Table 2: Summary of test cases, stating the reference to the re-
spective equation (Eqn.), the number of independent variables
(IVs), the number of dependent variables (DVs), the number
of free parameters (|Θ|), as well as distinct operations (o∗).

Test Case Eqn. IVs DVs |Θ| o∗

Weber’s Law (2) 2 1 1 subtraction
Exp. Learning (10) 3 1 1 exponential
LCA (12) 3 1 3 rectified linear

learning rate × −), momentum . and weight decay
× −. Following Liu et al. (2018), we initialize archi-
tecture variables to be zero. For a given w∗, we optimized α

for the validation set over  epochs using Adam (Kingma
& Ba, 2014), with initial learning rate × −, momentum
β = (.,.) and weight decay ×−.

After training w and α, we sampled the final architecture
by selecting operations with the highest architectural weights.
Finally, we trained 5 random initializations of each sam-
pled architecture on the training set for 1000 epochs using
SGD with a cosine annealing schedule (initial learning rate
= ., minimum learning rate × −). All parameters
were selected based on recoveries of out-of-sample test cases.
We used the same parameters across all search methods (reg-
ular DARTS, fair DARTS and random search). All experi-
ments were run on a 4 rack Intel cluster computer (2.5 GHz
Ivybridge; 20 cores per node); each search condition was per-
formed on a single node, allowing for 8GB memory.

Test Cases
All test cases are summarized in Table 2. Here, we report the
results for three different psychological models as test cases
for DARTS. While these models appear fairly simple, they are
based on common computational motifs in cognitive psychol-
ogy, and serve as a proof of concept for uncovering potential
weaknesses of DARTS. Below, we describe each computa-
tional model in greater detail.

Case 1: Weber’s Law Weber’s law is a quantitative hy-
pothesis from psychophysics relating the difference in inten-
sity of two stimuli (e.g. their brightness) to the probability
that a participant can detect the difference. Here, we adopt
the formal description of Weber’s law with c =  from Equa-
tion (2) (see Quantitative Models as Computation Graphs for
a detailed description). We consider the two stimulus inten-
sities, I and I as the independent variables of the model,
and P(detected) as the dependent variable. The generated
data set (for computing Lval, Ltrain and Ltest) is synthesized
based on 20 evenly spaced samples from the interval [,]
for I, and by computing P(detected) for all valid crossings
between I and I, with I ≤ I. Since we seek to explain a
single probability, we apply a sigmoid function to the output
of each generated computation graph.

Case 2: Exponential Learning The exponential learning
equation is one of the standard equations to explain the im-
provement on a task with practice (Thurstone, 1919; Heath-
cote, Brown, & Mewhort, 2000). It explains the performance

1840



on a task Pn as follows:
Pn = P∞−(P∞−P) · e−ε·t (10)

where t corresponds to the number of practice trials, ε

is a learning rate, P corresponds to the initial performance
on a task and P∞ to the final performance for t →∞. We
treat t, P and P∞ as independent variables of the model and
Pn as a real-valued dependent variable. To avoid numerical
instabilities based on large inputs, we constrain  ≤ t ≤ ,
 ≤ P ≤ . and . ≤ P∞ ≤  and set ε = . We generate
the synthesized data set by drawing eight evenly-spaced sam-
ples for each independent variable, generating a full crossing
between these samples, and by computing Pn for each con-
dition. The purpose of this test case is to highlight a poten-
tial weakness of DARTS: Intermediate nodes cannot repre-
sent non-linear interactions between input variables—as it is
the case in Equation (10)—due to the additive integration of
their inputs. Thus, DARTS must identify alternative expres-
sions to approximate Equation (10).

Case 3: Leaky Competing Accumulator To model the dy-
namics of perceptual decision making, Usher and McClelland
(2001) introduced the leaky, competing accumulator (LCA).
Every unit xi of the model represents a different choice in a
decision making task. The activity of these units is used to
determine the selected choice of an agent. The activity dy-
namics are determined by the non-linear equation (without
consideration of noise):

dxi = [ρi −λxi +µ f (xi)−β

∑
j 6=i

f (x j)]
dt
τ

(11)

where ρi is an external input provided to unit xi, λ is the
decay rate of xi, µ is the recurrent excitation weight of xi, β

is the inhibition weight between units, τ is a rate constant and
f (xi) is a rectified linear activation function. Here, we seek
to recover the dynamics of an LCA with three units, using the
following (typical) parameterization: λ = ., µ = ., β =
. and τ = . In addition, we assume that all units receive no
external input ρi = . This results in the simplified equation:

dxi = [−.xi +. f (xi)−.
∑
j 6=i

f (x j)]dt (12)

We treat units x,x,x as independent variables (−≤ xi≤
) and dx as the dependent variable for a given time step dt.
We generate data from the model by drawing eight evenly-
spaced samples for each xi, generating the full crossing be-
tween these, and computing dx for each condition.

Results
Figures 2, 3 and 4 summarize the search results for each test
case. The ground truth in each test case is generally best
recovered with regular DARTS, using 3 intermediate nodes
and no parameter penalty although the best fitting architecture
may result from different parameters.4 Both regular and fair
DARTS can achieve higher performance than random search,

4Note that we expect no relationship between γ and the validation
loss for random search, as random search is unaffected by γ.

A CBA

Recovered Computation Graph

D

E

Figure 2: Architecture search results for Weber’s law.
(A, B, C) The mean test loss as a function of the number of
intermediate nodes (k) and penalty on model complexity (γ)
for architectures obtained through (A) regular DARTS, (B)
fair DARTS and (C) random search. Vertical bars indicate the
standard error of the mean (SEM) across seeds. The star des-
ignates the test loss of the best-fitting architecture obtained
through regular DARTS, depicted in (D). (E) Psychometric
function for different baseline intensities, generated by the
original model and the recovered architecture shown in (D).

at least for k = . Below, we examine the best-fitting architec-
tures of regular DARTS for each test case—determined by the
lowest validation loss—which are generally capable of recov-
ering distinct operations used by the data generating model.

Case 1: Weber’s Law The best fitting architecture (k = )
for Weber’s law (Figure 2D) can be summarized as follows:

P(detected) = σlogistic(. · I−. · I−.) (13)

and resembles a simplification of the ground truth model
in Equation (2): σlogistic(I− · I)), recovering the computa-
tional motif of the difference between the two input variables,
as well as the role of I as a bias term. The architecture can
also reproduce psychometric functions generated by the orig-
inal model (Figure 2E). However, the recovery of Weber’s
law should be merely considered a sanity check given that the
data generating model could be recovered with much simpler
methods, such as logistic regression. This is reflected in the
decent performance of random search.

Case 2: Exponential Learning One of the core features
of this test case is the exponential relationship between task
performance and the number of trials. Note that we do not
expect DARTS to fully recover Equation (10) as it is—by
design—incapable of representing the non-linear interaction
of (P∞−P) and e−ε·t . Nevertheless, regular DARTS recov-
ers the exponential relationship between the number of trials
t and performance Pn for k =  (Figure 3D). However, the
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A CBA

Recovered Computation Graph
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Figure 3: Architecture search results for exponential
learning. (A, B, C) The mean test loss as a function of
the number of intermediate nodes (k) and penalty on model
complexity (γ) for architectures obtained through (A) regular
DARTS, (B), fair DARTS and (C) random search. Vertical
bars indicate the SEM across seeds. The star designates the
test loss of the best-fitting architecture obtained through regu-
lar DARTS, shown in (D). (E) The learning curves generated
by the original model and the recovered architecture in (D).

best-fitting architecture relies on a number of other transfor-
mations to compute Pn based on its independent variables,
and fails to fully recover learning curves of the original model
(Figure 3E). In the General Discussion, we examine ways of
mitigating this issue.

Case 3: Leaky Competing Accumulator The best-fitting
architecture, here shown for k =  (Figure 4D), bears remark-
able resemblance to the original model (cf. Equation (12)),

dxi = [.−. · x−.
∑
j 6=i

ReLU(xi)]dt (14)

in that it recovers the rectified linear activation function
imposed on the two units competing with x, as well as the
corresponding inhibitory weight . ≈ β = .. Yet, the re-
covered model misses to apply this function to unit xi. How-
ever, the latter is not surprising given that the LCA has been
reported to not be fully recoverable, partly because its param-
eters trade off against each other (Miletić, Turner, Forstmann,
& van Maanen, 2017). The generated dynamics are never-
theless capable of approximating the behavior of the original
model (Figure 4E).

General Discussion and Conclusion
Empirical scientists are challenged with integrating an in-
creasingly large number of experimental phenomena into
quantitative models of cognitive function. In this article, we

A CBA

Recovered Computation Graph
D

E

Figure 4: Architecture search results for LCA. (A, B, C)
The mean test loss as a function of the number of intermediate
nodes (k) and penalty on model complexity (γ) for architec-
tures obtained through (A) regular DARTS, (B) fair DARTS
and (C) random search. Vertical bars indicate the SEM across
seeds. The star designates the test loss of the best-fitting ar-
chitecture for regular DARTS (k = ), depicted in (D). (E)
Dynamics of each decision unit simulated with the original
model and the best architecture shown in (D), using the same
initial condition at t = .

introduced and evaluated a method for recovering quantita-
tive models of cognition using DARTS. The proposed method
treats quantitative models as DAGs, and leverages continuous
relaxation of the architectural search space to identify candi-
date models using gradient descent. We evaluated the perfor-
mance of two variants of this method, regular DARTS (Liu et
al., 2018) and fair DARTS (Chu et al., 2020), based on their
ability to recover three different quantitative models of human
cognition from synthetic data. Our results show that these
implementations of DARTS have an advantage over random
search, and are capable of recovering computational motifs
from quantitative models of human information processing,
such as the difference operation in Weber’s law or the recti-
fied linear activation function in the LCA. While the initial
results reported here seem promising, there are a number of
limitations worth addressing in future work.

All limitations of DARTS pertain to its assumptions, most
of which limit the scope of discoverable models. First, not
all quantitative models can be represented as a DAG, such as
ones that require independent variables to be combined in a
multiplicative fashion (see Test Case 2). Solving this problem
may require expanding the search space to include different
integration functions performed on every node.5 Symbolic

5Another solution would be to linearize the data or to operate in
logarithmic space. However, the former might hamper interpretabil-
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regression algorithms provide another solution to this prob-
lem, by recursively identifying modularity of the underlying
computation graph, such as multiplicative separability or sim-
ple symmetry (Udrescu et al., 2020). Second, some opera-
tions may have an unfair advantage over others when trained
via gradient descent, e.g. if their gradients are larger. This
problem can be circumvented with non-gradient based archi-
tecture search algorithms, such as evolutionary algorithms or
reinforcement learning. Finally, the performance of DARTS
is contingent on a number of training and evaluation param-
eters, as is the case for other NAS algorithms. Future work
is needed to evaluate DARTS for a larger space of param-
eters, in addition to the number of intermediate nodes and
the penalty on model complexity as explored in this study.
However, despite all these limitations, DARTS may provide
a first step toward automating the construction of complex
quantitative models based on interpretable linear and non-
linear expressions, including connectionist models of cogni-
tion (McClelland & Rumelhart, 1986; Rogers & McClelland,
2004; Musslick, Saxe, Hoskin, Reichman, & Cohen, 2020).

In this study, we consider a small number of test cases to
evaluate the performance of DARTS. While these test cases
present useful proofs of concept, we encourage the rigor-
ous evaluation of this method based on more complex quan-
titative models of cognitive function. To enable such ex-
plorations, we provide open access to a documented imple-
mentation of the evaluation pipeline described in this article
(www.empiricalresearch.ai). This pipeline is part of a
Python toolbox for autonomous empirical research, and al-
lows for the user-friendly integration and evaluation of other
search methods and test cases. As such, the repository in-
cludes additional test cases (e.g. models of controlled pro-
cessing) that we could not include in this article due to
space constraints. We invite interested researchers to evaluate
DARTS based on other computational models, and to utilize
this method for the automated discovery of quantitative mod-
els of human information processing.
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